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probabilistic prediction



probabilistic prediction

Introduction

∙ Many classifiers are able to output not only the predicted class label, but also a
probability distribution over the possible classes.

∙ Naturally, all probabilistic prediction requires that the probability estimates are
well-calibrated, i.e., the predicted class probabilities must reflect the true,
underlying probabilities.

∙ If this is not the case, the probabilistic predictions actually become misleading.
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probabilistic prediction

Calibration

∙ In probabilistic prediction, the task is to predict the probability distribution of the
label, given the training set and the test object.

∙ The goal is to obtain a valid predictor.
∙ In general, validity means that the probability distributions from the predictor must
perform well against statistical tests based on subsequent observation of the labels.

∙ We are interested in calibration: p(cj | pcj) = pcj , where pcj is the probability estimate
for class j.
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probability estimation trees

∙ Decision trees are relatively accurate, produce comprehensible models and require a
minimum of parameter tuning.

∙ The two most notable decision tree algorithms are C4.5/C5.01 and CART2.
∙ Decision trees are readily available for producing class membership probabilities; in
which case they are referred to as Probability Estimation Trees (PETs)3.

∙ For PETs, the most straightforward way to obtain a class probability is to use the
relative frequency; i.e., the proportion of training instances corresponding to a
specific class in the leaf where the test instance falls.

∙ Intuitively, a leaf containing many training instances is a better estimator of class
membership probabilities, so often, a Laplace estimate is used instead.

1J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., 1993
2L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, 1984
3F. Provost and P. Domingos, “Tree induction for probability-based ranking,” Mach. Learn., vol. 52, no. 3, pp.

199–215, 2003
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platt scaling

Platt scaling4 was originally introduced as a method for calibrating support-vector
machines. It works by finding the parameters of a sigmoid function maximizing the
likelihood of a calibration set. The function is

p̂(c | s) = 1
1+ eAs+B , (1)

where p̂(c | s) gives the probability that an example belongs to class c, given that it has
obtained the score s, and where A and B are parameters of the function found by
gradient descent search.

4J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods,” in Advances in Large Margin Classifiers. MIT Press, 1999, pp. 61–74
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isotonic regression

Isotonic regression5 is a calibration method that can be regarded as a general form of
binning, not requiring a predetermined number of bins.

The calibration function, which is assumed to be isotonic, i.e., non-decreasing, is a
step-wise regression function, which can be learned by an algorithm known as the
pair-adjacent violators algorithm.

The algorithm outputs a function that for each input probability interval returns the
fraction of positive examples in the calibration set in that interval.

5B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision trees and naive
Bayesian classifiers,” in Proc. 18th International Conference on Machine Learning, 2001, pp. 609–616
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venn predictors

Venn predictors6, are multi-probabilistic predictors with proven validity properties.

Venn predictors was originally suggested in a transductive setting, but here we use the
inductive variant:

To construct an inductive Venn predictor, the available labeled training examples
({(x1, y1), . . . , (xl, yl)}) are split into two parts, the proper training set
({(x1, y1), . . . , (xq, yq)}), used to train an underlying model, and a calibration set
({(xq+1, yq+1), . . . , (xl, yl)}) used to estimate label probabilities for each new test example.

When presented with a new test object xl+1, the aim of Venn prediction is to estimate the
probability that yl+1 = Yj, for each Yj in the set of possible labels Yj ∈ {Y1, . . . , Yc}.

6V. Vovk, G. Shafer, and I. Nouretdinov, “Self-calibrating probability forecasting,” in Advances in Neural
Information Processing Systems, 2004, pp. 1133–1140
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venn predictors

The key idea of Venn prediction is to divide all calibration examples into a number of k
categories and use the relative frequency of label Yj ∈ {Y1, . . . , Yc} in each category to
estimate label probabilities for test instances falling into that category.

The categories are defined using a Venn taxonomy and every taxonomy leads to a
different Venn predictor.

Typically, the taxonomy is based on the underlying model, trained on the proper training
set, and for each calibration and test object xi, the output of this model is used to assign
(xi, yi) into one of the categories.

One basic Venn taxonomy, which can be used with every kind of classification model,
simply puts all examples predicted with the same label into the same category.
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venn predictors

For test instances, the category is first determined using the underlying model, in an
identical way as for the calibration instances. Then, the label frequencies of the
calibration instances in that category are used to calculate the estimated label
probabilities.

As in conformal prediction, the test instance zl+1 is included in this calculation. However,
since the true label yl+1 is not known for the test object xl+1, all possible labels
Yj ∈ {Y1, . . . , Yc} are used to create a set of label probability distributions.
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venn predictors

Instead of dealing directly with these distributions, the lower L(Yj) and upper U(Yj)
probability estimates for each label Yj are often used.

Let k be the category assigned to the test object xl+1 by the Venn taxonomy, and Zk be the
set of calibration instances belonging to category k. Then the lower and upper
probability estimates are defined by:

L(Yj) =
∣∣{(xm, ym) ∈ Zk | ym = Yj}

∣∣
|Zk|+ 1 (2)

and:
U(Yj) =

∣∣{(xm, ym) ∈ Zk | ym = Yj}
∣∣+ 1

|Zk|+ 1 (3)
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venn predictors

In order to make a prediction ŷl+1 for xl+1 using the lower and upper probability
estimates, the following procedure is employed in this study:

ŷl+1 = max
Yj∈{Y1,...,Yc}

L(Yj) (4)

The output of a Venn predictor is the above prediction ŷl+1 together with the probability
interval:

[L(ŷl+1),U(ŷl+1)] (5)
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method

In the empirical investigation, we look at different ways of producing probability
estimates from standard decision trees.

The quality of the probability estimates was measured using the reliability term of the
Brier score7, which is defined as:

1
N

K∑
k=1

nk(rk − ϕk)
2, (6)

where, for the interval k, nk is the number of instances, rk is the mean probability
estimate for the positive class and ϕk is the proportion of instances actually belonging to
the positive class. We used K = 100 intervals.

All experiments were performed in MatLab, so the decision trees were induced using the
MatLab version of CART. All parameter values were left at their default values, leading to
fairly large trees. Laplace estimates from the trees were used instead of the relative
frequencies in all cases.

7G. Brier, “Verification of forecasts expressed in terms of probability,” Monthly Weather Review, vol. 78, no. 1,
pp. 1–3, 1950
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method

The 22 data sets used are all two-class problems, publicly available from either the UCI
repository8 or the PROMISE Software Engineering Repository9.

Setups compared
∙ LaP: The Laplace estimates from the tree. Since this approach does not need any
external calibration, all training data was used for generating the tree.

∙ Platt: Standard Platt scaling where the logistic regression model was learned on the
calibration set.

∙ Iso: Standard isotonic regression based on the calibration set, where an additional
Laplace smoothening was applied to the resulting probability estimates.

∙ Venn: A Venn predictor using a taxonomy where the category is the predicted label
from the underlying model, i.e. only two categories are used.

All three methods employing calibration used 2/3 of the training instances for the tree
induction and 1/3 for the calibration. Standard 10x10-fold cross-validation were used, so
results are averaged over the 100 folds.

8Kevin Bache and Moshe Lichman, “UCI Machine Learning Repository,” 2013
9Sayyad Shirabad, J. and Menzies, T.J., “The PROMISE repository of software engineering databases.” 2005
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results - venn predictor intervals and accuracy

Data set Low High Size Accuracy Data set Low High Size Accuracy
colic .777 .795 .019 .790 kc2 .741 .759 .018 .732
creditA .821 .831 .010 .827 kc3 .857 .878 .021 .867
diabetes .701 .709 .009 .703 liver .622 .642 .019 .618
german .700 .707 .007 .704 mw .907 .925 .018 .919
haberman .708 .731 .023 .716 pc4 .872 .877 .005 .869
heartC .736 .758 .022 .750 sonar .681 .713 .032 .697
heartH .748 .771 .023 .760 spect .867 .896 .029 .886
heartS .735 .760 .024 .748 spectf .778 .803 .025 .786
hepati .781 .824 .043 .789 tic-tac-toe .905 .912 .007 .910
iono .858 .877 .019 .877 wbc .898 .912 .014 .910
kc1 .732 .738 .006 .735 vote .828 .841 .013 .838
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results - probability estimates and accuracy

Estimates Accuracies Differences
Data set LaP Platt Iso Venn LaP Platt Iso Venn LaP Platt Iso Venn
colic .897 .819 .822 .786 .784 .799 .837 .790 .113 .020 -.015 -.004
creditA .912 .850 .834 .826 .828 .827 .836 .827 .084 .023 -.002 -.001
diabetes .872 .733 .726 .705 .712 .715 .720 .703 .160 .017 .006 .002
german .793 .704 .699 .703 .612 .703 .700 .704 .181 .001 -.001 -.001
haberman .805 .725 .712 .719 .667 .712 .703 .716 .138 .013 .010 .004
heartC .876 .773 .761 .747 .734 .753 .757 .750 .142 .020 .004 -.003
heartH .875 .789 .779 .759 .767 .767 .775 .760 .109 .022 .004 -.001
heartS .877 .773 .761 .747 .759 .753 .756 .748 .118 .019 .004 -.001
hepati .893 .820 .794 .802 .772 .793 .784 .789 .121 .027 .010 .013
iono .941 .889 .867 .867 .880 .879 .884 .877 .061 .010 -.016 -.010
kc1 .858 .737 .740 .735 .683 .735 .736 .735 .176 .002 .004 .000
kc2 .891 .772 .771 .750 .730 .754 .768 .732 .161 .018 .003 .019
kc3 .916 .875 .851 .867 .835 .864 .858 .867 .080 .011 -.007 .000
liver .827 .646 .659 .632 .639 .632 .641 .618 .188 .014 .018 .014
mw .936 .924 .902 .916 .897 .916 .914 .919 .039 .007 -.012 -.003
pc4 .945 .889 .880 .874 .871 .879 .881 .869 .074 .010 -.001 .005
sonar .908 .719 .716 .697 .713 .700 .704 .697 .194 .019 .012 .000
spect .884 .892 .861 .882 .851 .887 .888 .886 .032 .005 -.027 -.005
spectf .911 .800 .785 .790 .742 .787 .785 .786 .169 .013 .000 .005
tic-tac-toe .917 .928 .900 .908 .927 .911 .918 .910 -.010 .017 -.018 -.002
wbc .941 .922 .899 .905 .915 .911 .916 .910 .026 .011 -.017 -.005
vote .886 .863 .839 .834 .843 .840 .845 .838 .043 .023 -.006 -.004
Mean .889 .811 .798 .793 .780 .796 .800 .792 .109 .015 -.002 .001
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results - reliability of probability estimates

Data set LaP Platt Iso Venn
colic .160 .096 .100 .072
creditA .179 .126 .128 .104
diabetes .132 .041 .050 .029
german .064 .002 .006 .001
haberman .066 .008 .014 .006
heartC .152 .080 .081 .063
heartH .138 .075 .078 .056
heartS .150 .080 .079 .063
hepati .090 .029 .031 .022
iono .186 .136 .126 .117
kc1 .090 .008 .012 .006
kc2 .120 .034 .047 .024
kc3 .057 .010 .016 .007
liver .111 .020 .026 .015
mw .036 .007 .011 .005
pc4 .076 .029 .037 .021
sonar .183 .055 .057 .043
spect .026 .004 .008 .003
spectf .105 .015 .022 .012
tic-tac-toe .172 .165 .152 .144
wbc .207 .182 .168 .165
vote .119 .093 .091 .070
Mean .119 .059 .061 .048
Mean Rank 4.00 2.23 2.77 1.00
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conclusions

This paper has presented the first large-scale comparison of Venn predictors to existing
techniques for calibrating probabilistic predictions.

The empirical investigation clearly showed the capabilities of a Venn predictor; the
produced prediction intervals were very tight, and the probability estimates extremely
well-calibrated.

In fact, using the reliability criterion, which directly measures the quality of the
probability estimates, the Venn predictor estimates were more exact than Platt scaling
and isotonic regression on every data set.

Directions for future work include evaluating Venn prediction as a calibration technique
also for other learning algorithms, such as random forests, as well as considering more
elaborate approaches for constructing the underlying categories, e.g., by means of
so-called Venn-ABERS predictors10.

10V. Vovk and I. Petej, “Venn-abers predictors,” arXiv preprint arXiv:1211.0025, 2012
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datasets

Table: Datasets used in the experiments. #inst denotes the number of instances contained in the
dataset; #min and #maj denote the number of examples belonging to the minority and majority
classes, respectively. %min is the percentage of examples that belong to the minority class.

Dataset #inst #min #maj ҍmin Dataset #inst #min #maj ҍmin

Colic 357 134 223 37.5 hepatitis 155 32 123 20.6
wbc 699 241 458 34.5 ionosphere 351 126 225 35.9
credit-a 690 307 383 44.5 kc3 325 42 283 12.9
german 1000 300 700 30.0 liver-disorders 345 145 200 42.0
diabetes 768 268 500 34.9 mw 379 30 349 7.9
haberman 306 81 225 26.5 pc4 1343 177 1166 13.1
heart-c 303 138 165 45.5 sonar 208 97 111 46.6
heart-h 294 106 188 36.1 spect 218 24 194 11.0
heart-s 270 120 150 44.4 spectf 267 55 212 20.6
kc1 1192 315 877 26.4 tic-tac-toe 958 332 626 34.7
kc2 369 99 270 26.8 vote 517 144 373 27.8
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