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Synchronization

synchronization n.
1: the relation that exists when things occur at the same 
time;
2: an adjustment that causes something to occur or recur 
in unison
3: coordinating by causing to indicate the same time; "the 
synchronization of their watches was an important 
preliminary“

Source: WordNet  (1997 Princeton University)



Synchronization

¢ Shared data structures needs 
synchronization

¢ Synchronization using Locks
l Mutually exclusive access to whole or parts 

of the data structure
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Shared memory 
Multiprocessor Systems 
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Blocking synchronization

¢ Mutual exclusion locks
l Traditional solution

• Semaphores, spin-locks, disabling interrupts
• Protects a critical section

l Drawbacks
• Blocking
• Lock convoys
• Priority inversion
• Risk of dead-lock
• Limits parallelism



Hardware support for 
synchronization

¢ Synchronization primitives
l Built into CPU and memory system
l Atomic (i.e. a critical section of one instruction)

l Examples
• Test-and-set
• Compare-and-Swap

bool compare_and_swap(int *target, int old, int new) atomic {
if (*target = old) {

*target = new;
return TRUE;

}
return FALSE;

}



Non-blocking 
synchronization
¢ Lock-Free or Optimistic synchronization
l Try to do the operation as if there where no 

interference
1. Prepare update of shared data
2. Commit using atomic synchronization primitives
3. Retry if interfered with

l At least one concurrent operation always 
makes progress

l Benefits
• Fast on average

l Drawbacks
• Operations can starve



Non-blocking 
synchronization
¢ Wait-Free synchronization
l All operations finishes in a finite number of 

their own steps
l Benefits

• Bounded execution times
• Attractive for real-time systems

(WCET known, no blocking)

l Drawbacks
• Algorithms and implementations usually complex
• Average performance may be worse than lock-

free



#CPUs

#Threads

Traditional desktop 
applications

Traditional multi-
threaded desktop 
applications

Multi-threaded applications on 
new multicore CPU(s)

High performance multi-
threaded applications on  
multiprocessors

Concurrent applications
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Example: Counting (I)
volatile int shared_counter = 0;
void count_thread() {

for (int j = 0; j < MAX; j++) {

shared_counter = shared_counter + 1;

}

} Thread A Thread B

Read shared_counter -> regX

Read shared_counter -> regX

regX = regX + 1

Write regX to shared_counter

regX = regX + 1

Write regX to shared_counter

shared_counter = 4

shared_counter = ?



Example: Counting (II)
volatile int shared_counter = 0; mutex_t mutex;
void count_thread() {

for (int j = 0; j < MAX; j++) {

lock(mutex);

shared_counter = shared_counter + 1;

unlock(mutex)

}

}
Thread A Thread B

Lock mutex
Read shared_counter -> regX
regX = regX + 1
Write regX to shared_counter
Unlock mutex

shared_counter = 4

shared_counter = 6

Lock mutex
Read shared_counter -> regX
regX = regX + 1
Write regX to shared_counter
Unlock mutex



Example: Counting (III)
volatile int shared_counter = 0;
void count_thread() {

for (int j = 0; j < MAX; j++) {
repeat {

int old = shared_counter;
int new = old + 1;

} until CAS(&shared_counter, old, new)
}

}

Read shared_counter -> regX

Read shared_counter -> regX

regY = regX + 1

CAS(shared_counter, regX, regY) -> false

regY = regX + 1

CAS(shared_counter, regX, regY)
-> True

Thread A Thread B shared_counter = 4

shared_counter = 5
Thread B has to retry…



Work in progress

¢ Combining lock-free operations and 
structures

¢ Case study: Lock-free memory 
allocator

L-F Set
L-F Set

Remove Insert

“Remove + Insert” is not atomic.
An item may get stuck in “limbo”.



Moving a shared pointer

¢ Goal: 
l Move a pointer value between two shared pointer locations

¢ Requirements
l The pointer target must stay accessible
l The same # of shared pointers to the target after the move 

as before
l Lock-free behaviour

¢ Issues
l One atomic CAS is not enough! We’ll need several steps.
l Interfering threads need to help unfinished operations
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Moving a shared pointer
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New_pos From

Old_pos -

New_pos To
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New_pos To

Old_pos -
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Note that some tricky details are needed to prevent ABA problems..



Summary

¢ Non-blocking synchronization
l Can offer increased performance
l Avoids

• Blocking
• Deadlock
• Priority inversion



Questions?

¢ Contact Information:
l Address:

Anders Gidenstam
Computing Science
Chalmers University of Technology

l Email:
andersg @ cs.chalmers.se

l Web:
http://www.cs.chalmers.se/~andersg
http://www.cs.chalmers.se/~dcs


