
Optimistic Synchronization
in parallell systems

Anders Gidenstam
(andersg@cs.chalmers.se)

Synchronization

synchronization n.
1: the relation that exists when things occur at the same
time;
2: an adjustment that causes something to occur or recur
in unison
3: coordinating by causing to indicate the same time; "the
synchronization of their watches was an important
preliminary“

Source: WordNet (1997 Princeton University)

Synchronization

¢ Shared data structures needs
synchronization

¢ Synchronization using Locks
l Mutually exclusive access to whole or parts

of the data structure

P1
P2

P3

P1
P2

P3

This slide is borrowed from Håkan Sundell

Shared memory
Multiprocessor Systems

CPU CPU CPU

CPU CPU CPU CPU CPU CPU

Cache Cache Cache

Cache bus Cache bus Cache bus

Memory

Memory Memory Memory

...

. . .

... ...
. . .

- Uniform Memory Access (UMA)

- Non-Uniform Memory Access (NUMA)

This slide is borrowed from Håkan Sundell

Blocking synchronization

¢ Mutual exclusion locks
l Traditional solution

• Semaphores, spin-locks, disabling interrupts
• Protects a critical section

l Drawbacks
• Blocking
• Lock convoys
• Priority inversion
• Risk of dead-lock
• Limits parallelism

Hardware support for
synchronization

¢ Synchronization primitives
l Built into CPU and memory system
l Atomic (i.e. a critical section of one instruction)

l Examples
• Test-and-set
• Compare-and-Swap

bool compare_and_swap(int *target, int old, int new) atomic {
if (*target = old) {

*target = new;
return TRUE;

}
return FALSE;

}

Non-blocking
synchronization
¢ Lock-Free or Optimistic synchronization
l Try to do the operation as if there where no

interference
1. Prepare update of shared data
2. Commit using atomic synchronization primitives
3. Retry if interfered with

l At least one concurrent operation always
makes progress

l Benefits
• Fast on average

l Drawbacks
• Operations can starve

Non-blocking
synchronization
¢ Wait-Free synchronization
l All operations finishes in a finite number of

their own steps
l Benefits

• Bounded execution times
• Attractive for real-time systems

(WCET known, no blocking)

l Drawbacks
• Algorithms and implementations usually complex
• Average performance may be worse than lock-

free

#CPUs

#Threads

Traditional desktop
applications

Traditional multi-
threaded desktop
applications

Multi-threaded applications on
new multicore CPU(s)

High performance multi-
threaded applications on
multiprocessors

Concurrent applications

1 5

Example: Counting (I)
volatile int shared_counter = 0;
void count_thread() {

for (int j = 0; j < MAX; j++) {

shared_counter = shared_counter + 1;

}

} Thread A Thread B

Read shared_counter -> regX

Read shared_counter -> regX

regX = regX + 1

Write regX to shared_counter

regX = regX + 1

Write regX to shared_counter

shared_counter = 4

shared_counter = ?

Example: Counting (II)
volatile int shared_counter = 0; mutex_t mutex;
void count_thread() {

for (int j = 0; j < MAX; j++) {

lock(mutex);

shared_counter = shared_counter + 1;

unlock(mutex)

}

}
Thread A Thread B

Lock mutex
Read shared_counter -> regX
regX = regX + 1
Write regX to shared_counter
Unlock mutex

shared_counter = 4

shared_counter = 6

Lock mutex
Read shared_counter -> regX
regX = regX + 1
Write regX to shared_counter
Unlock mutex

Example: Counting (III)
volatile int shared_counter = 0;
void count_thread() {

for (int j = 0; j < MAX; j++) {
repeat {

int old = shared_counter;
int new = old + 1;

} until CAS(&shared_counter, old, new)
}

}

Read shared_counter -> regX

Read shared_counter -> regX

regY = regX + 1

CAS(shared_counter, regX, regY) -> false

regY = regX + 1

CAS(shared_counter, regX, regY)
-> True

Thread A Thread B shared_counter = 4

shared_counter = 5
Thread B has to retry…

Work in progress

¢ Combining lock-free operations and
structures

¢ Case study: Lock-free memory
allocator

L-F Set
L-F Set

Remove Insert

“Remove + Insert” is not atomic.
An item may get stuck in “limbo”.

Moving a shared pointer

¢ Goal:
l Move a pointer value between two shared pointer locations

¢ Requirements
l The pointer target must stay accessible
l The same # of shared pointers to the target after the move

as before
l Lock-free behaviour

¢ Issues
l One atomic CAS is not enough! We’ll need several steps.
l Interfering threads need to help unfinished operations

From

Moving a shared pointer

To

New_pos From

Old_pos -

New_pos To

Old_pos From

New_pos To

Old_pos -

From

Note that some tricky details are needed to prevent ABA problems..

Summary

¢ Non-blocking synchronization
l Can offer increased performance
l Avoids

• Blocking
• Deadlock
• Priority inversion

Questions?

¢ Contact Information:
l Address:

Anders Gidenstam
Computing Science
Chalmers University of Technology

l Email:
andersg @ cs.chalmers.se

l Web:
http://www.cs.chalmers.se/~andersg
http://www.cs.chalmers.se/~dcs

