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Synchronization on a shared object

¢ Lock-free and wait-free synchronization
l Concurrent operations without enforcing mutual exclusion
l Avoids:

• blocking and priority inversion

l Lock-free
• At least one operation always makes progress

l Wait-free
• All operations finish in a bounded number of their own steps

¢ Synchronization primitives
l Built into CPU and memory system

• Atomic read-modify-write (i.e. a critical section of one instruction)

l Examples
• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional
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Synchronization on a shared object

¢ Desired semantics of a shared data 
object
l Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must 
be one single time instant during its 
duration where the operation appears to 
take effect.

O2

O3

O1

O1 O2 O3



2005
Anders Gidenstam, Distributed Computing and 

Systems, Chalmers
5

Memory management and lock-free 
synchronization

¢ Concurrent memory management
l Concurrent applications

• Memory is a shared resource
• Concurrent memory requests
• Potential problems: contention, blocking, etc

l Why lock-free?
• Scalability/fault-tolerance potential
• Prevents a delayed thread from blocking other threads

• Scheduler decisions
• Page faults etc

• Many non-blocking algorithms uses dynamic memory allocation
• => non-blocking memory allocator needed
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Memory Allocators

¢ Provide dynamic memory to the application
l Allocate / Deallocate interface

¢ Maintains a pool of memory (a.k.a. heap)
¢ Online problem – requests are handled in order
¢ Performance

l Fragmentation
l Runtime overhead

Memory address
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Concurrent Memory Allocators

¢ Goals
l Scalability
l Avoiding

• False-sharing
• Threads use data in the same cache-line

• Heap blowup
• Memory freed on one CPU is not made available to the others

• Fragmentation
• Runtime overhead

Cache line

CPUs
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The Hoard architecture [Berger et al, 2000]
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Per-processor heaps
¢ Threads running on different CPUs allocate 

from different places
¢ Avoids false-sharing and limits contention

Fixed set of size classes/allocatable sizes
¢ Handled separately
¢ Pros: Simple
¢ Cons: Increases internal fragmentation

Superblocks
¢ Contains blocks of one size class
¢ Pros: Easy to transfer and reuse 

memory, prevents heap blowup
¢ Cons: External fragmentation
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The lock-free challenges

1. The superblock internal freelist

2. Moving and finding superblocks within a per-
processor heap

3. Returning superblocks to the global heap for reuse

l Lock-free stack (a.k.a. IBM freelist [IBM, 1983])

l New lock-free data structure: The flat-set.
• Find an item in a set
• Move an item between sets atomically
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Lock-free flat-sets

Lock-free container data structure
¢ Properties

l Items can be moved from one 
set to another atomically 

l An item can only be in one 
“set” at a time

¢ Operations
l Insert
l Get_any
l Insert atomically removes the item from 

its old location

L-F Set L-F Set

Remove Insert

Unless “Remove + Insert” appears atomic
an item may get stuck in “limbo”.

Current

Flat-set

Superblock

SB header
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Moving a shared pointer

¢ Goal: 
l Move a pointer value between two shared pointer locations

¢ Requirements
l The pointer target must stay accessible
l The same # of shared pointers to the target after the move 

as before
l Lock-free behaviour

¢ Issues
l One atomic CAS is not enough! We’ll need several steps.
l Interfering threads need to help unfinished operations
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From

Moving a shared pointer

To

New_pos From

Old_pos -

New_pos To

Old_pos From

New_pos To

Old_pos -

From

Note that some extra details are needed to prevent ABA problems.
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Experimental results

¢ Benchmark applications
l Larson

• Scalability
• False-sharing

l Active-false/Passive-false
• Active false-sharing
• Passive false-sharing
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Experimental results

Larson benchmark. Sun 4xUltraSPARC III

Speed-up Memory usage
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Experimental results

Larson benchmark. SGI Origin 3800 32(/128)xMIPS

Speed-up Memory usage
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Conclusions

¢ Lock-free memory allocator
l Scalable
l Behaves well on both UMA and NUMA architectures

¢ Lock-free flat-sets
l New lock-free data structure
l Allows lock-free inter-object operations

¢ Implementation
l Freely available (GPL)
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Future Work

¢ Further development of the memory 
allocator
l Reclaiming superblocks for reuse in a 

different size class
l Improve search strategies for flat-sets

¢ Evaluate the memory allocator with real 
applications

¢ How to make lock-free composite objects 
from “smaller” lock-free objects
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Questions?

¢ Contact Information:
l Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

l Email:
andersg @ cs.chalmers.se

l Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

l Implementation
http://www.cs.chalmers.se/~dcs/nbmalloc.html
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#CPUs

#Threads

Traditional desktop 
applications

Traditional multi-
threaded desktop 
applications

Multi-threaded applications on 
new multicore CPU(s)

High performance multi-
threaded applications on  
multiprocessors

Concurrent applications
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