
LFthreads: A lock-free thread library

Anders Gidenstam
PostDoc, AG1, Max-Planck-Institut für Informatik, Germany

Joint work with:

Marina Papatriantafilou
Distributed Computing and Systems group

Department of Computer Science and Engineering,

Chalmers University of Technology, Göteborg, Sweden



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

2

Outline

 Introduction

 Lock-free synchronization

 The Problem & Background

 LFthreads

 Overview

 Lock-free thread-blocking synchronization

 Experiments

 Conclusions



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

3

Synchronization on a shared object

 Lock-free synchronization
 Concurrent operations without enforcing mutual 

exclusion

 Avoids:
• Blocking (or busy waiting), convoy effects and priority 

inversion

 Progress Guarantee
• At least one operation always makes progress

 Synchronization primitives
 Built into CPU and memory system

• Atomic read-modify-write (i.e. a critical section of one instruction)

 Examples: Compare-and-Swap, Load-Linked / Store-Conditional



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

4

Correctness of a concurrent 
object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

5

Correctness of a concurrent 
object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1

O1 O3 O2



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

6

The Problem

 Multithreading on a 
multiprocessor

 Thread multiplexing and 
scheduling

 Thread synchronization 
objects

 Aim: The POSIX pthread API 
implemented in a lock-free 
way

 Motivation: Why lock-free?

 Processors should always be 
able to do useful work

• In spite of others being slow: 
page faults, interrupts, h/w 
problems

 Improved performance?

P2

P1

Processors

T3

Running threads

T5

T4P3

Ready Queue

T2 T1

Waiting runnable
threads



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

7

The Problem(s)

 Contention on the ready 
queue

 Non-blocking work-

stealing; Hood,

[Blumhofe et al, 1994],

[Blumhofe et al, 1998]

 Lesser Bear,

[Oguma et al, 2001]

 In LFthreads: a lock-free 

queue

P2

P1

Processors

T4P3

Ready Queue

T2 T1

DequeueDequeue

Enqueue



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

8

P1

The Problem(s)

 Blocking synchronization

 Often undesirable

• Hinders progress

• Expensive context switches

 Sometimes required

• Waiting for some event

• Legacy applications

 Goal in LFthreads:

• Lock-free for processors

• Resilience to slow 

operations/processors

P2

Processors

T3

T5

T4P3

Block T5



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

9

The Problem(s)

 Implementing blocking 
synchronization

 Keep common case fast

• Often no contention

• User / kernel level split 

implementation

• E.g. Linux, Solaris

 Critical sections are short

• Spinning v.s. blocking

[Zahorjan et al, 1991]

P2

P1

Processors

T3

T4P3

Acquire

T5



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

10

The Problem(s)

P2

P1

Processors

T3

T2

T4P3 Block

Owner

T5

 Implementing blocking 
synchronization

 Keep common case fast

• Often no contention

• User / kernel level split 

implementation

• E.g. Linux, Solaris

 Critical sections are short

• Spinning v.s. blocking

[Zahorjan et al, 1991]

 Enlisting the scheduler

• [Devi et al, 2006]

• [Kontothanassis et al, 1997]



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

11

The Problem(s)

 Implementing blocking 
synchronization

 There can be concurrent 

operations –

synchronization needed

• Mutual exclusion?

• A slow processor could force 

others to spin

• Slow: e.g. page faults, 

interrupts, h/w problems

Kernel partial solution:

 spin lock + disable IRQ

P2

P1

Processors

T3

T5

T4P3

BlockingBlocking



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

12

More Related Work

 Lock-free threading

 Hood. R. Blumofe, D. Papadopoulos, 1998.

 Lesser Bear. H. Oguma, Y. Nakayama, 2001.

 Lock-free operating systems kernels

 Synthesis. H. Massalin, 1992.

 Cache Kernel. M. Greenwald, D. Cheriton, 

1999.

 A. Gavare, P. Tsigas, 2005.



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

13

LFthreads – system overview 

P2

P1

Processors

T3

Running threads Ready Queue

T2

T5

T1

T4
P3

Waiting runnable threads

Synchronization object

w. blocked threads

T6



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

14

Thread synchronization objects

 Mutual exclusion object – mutex

 Two states: unlocked / locked

 Three operations for threads

• lock(m) - Locks m. If m is already locked the

thread is blocked.

• trylock(m) - Tries to lock m. Returns false if m is

already locked.

• unlock(m) - Unlocks m. 



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

15

Mutex implementation

 “Typical” mutex implementation

 Note: The spin-lock protects the mutex_t record from 
concurrent updates by different processors

 Operations cannot overlap

 Processors might be forced to spin waiting for others

type mutex_t is record

state : enum (UNLOCKED, LOCKED);

waiting : Queue of thread_t;

slock : spin_lock_t;



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

16

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

0

0

TA

lock(M)

TX

TY

count

Hand-off



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

17

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

IncreaseIncrease



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

18

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

2

0

TA

lock(M)

TX

TY

count

Hand-off

IncreaseIncrease

lock(M)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

19

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

2

0

TA

lock(M)

TX

TY

count

Hand-off

IncreaseEnqueue

lock(M) TX



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

20

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

2

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M) TX

unlock(M)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

21

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M) TX

unlock(M)

DecreaseDecrease



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

22

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

TX

unlock(M)

Dequeue

Enqueue on ready queue

Dequeue and

Enqueue on ready queue



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

23

Lock-free mutex implementation
The Hand-off method

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

TX

unlock(M)

Dequeue

Enqueue on ready queue

Dequeue and

Enqueue on ready queue
Done!



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

24

Lock-free mutex implementation:
Slow lock (i)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

DecreaseDecrease



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

25

Lock-free mutex implementation:
Slow lock (i)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

DecreaseUhu?! Empty?



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

26

Lock-free mutex implementation:
Slow lock (i)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

TA

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

DecreaseSet hand-off flag



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

27

Lock-free mutex implementation:
Slow lock (i)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

TA

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

28

Lock-free mutex implementation:
Slow lock (i)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

TA

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?
Done!



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

29

Lock-free mutex implementation:
Slow lock (ii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

TA

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

TX



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

30

Lock-free mutex implementation:
Slow lock (ii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

TA

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

TX

Erase if unchanged



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

31

Lock-free mutex implementation:
Slow lock (ii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

Erase if unchanged

TX

Dequeue

Enqueue on ready queue

Dequeue and

Enqueue on ready queue



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

32

Lock-free mutex implementation:
Slow lock (ii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

0

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

Erase if unchanged

TX

Dequeue

Enqueue on ready queue

Dequeue and

Enqueue on ready queue
Done!



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

33

Lock-free mutex implementation:
Slow lock (iii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

Z

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

TX

Erase if unchanged



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

34

Lock-free mutex implementation:
Slow lock (iii)

type mutex_t is record

count : integer;

waiting : Lock-free Queue of thread_t;

hand-off : integer;

1

Z

TA

lock(M)

TX

TY

count

Hand-off

lock(M)

unlock(M)

Set hand-off flag

Still empty?

TX

Erase if unchanged
Done!



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

35

Proof-of-concept implementation

 LFthreads user-level thread library

 Linux/IA32 platform

 “Cloned” processes as virtual CPUs

• Share the same

address space,

file descriptor table etc

 User-level thread contexts

based on

• SUSv2 setcontext(2) / getcontext(2)

• Non-preemptive scheduling (so far)

 POSIX compliance a goal

P2

P1

VP
1

CPUs

Virtual CPUs

VP
3

VP
2

VP
4

T3

Threads

Ready Queue

T2

T5

T1

T4

Kernel space User space



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

36

Experimental evaluation

 Micro benchmark 

 Threads competing for a critical section
• High contention

• Work: 1 -1

• Low contention

• Work: 1 - 1000

 Configurations
• LFthreads with 1, 2, 4, 8,16 virtual CPUs

• lock-free mutex

• spin-lock-based mutex

• Platforms standard pthreads (2.6.x kernel)

 2x dual AMD Opteron processors 



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

37

Experimental evaluation (i)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

38

Experimental evaluation (i)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

39

Experimental evaluation (i)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

40

Experimental evaluation (i)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

41

Experimental evaluation (i)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

42

Experimental evaluation (i)

Why?



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

43

Experimental evaluation (i)

Why?

Remember

spinning v.s.

blocking?



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

44

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

45

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

46

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

47

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

48

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

49

Experimental evaluation (ii)



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

50

Conclusions and future work

 LFthreads: Lock-free user-level thread library

 Lock-free thread-blocking synchronization object

 The hand-off method

 Future work:

 More synchronization objects

• Condition variable

• Semaphore

• Read-Write locks

• Signals, Cancellation etc

 More POSIX pthread compliance

 Improved scheduling – e.g. lock-free work-stealing



09/17/08
Anders Gidenstam, Max-Planck Institute for 

Computer Science

51

Thank you for listening!

Questions?


