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The Lock-Free Memory Reclamation 
Problem

¢ Concurrent shared data structure
l Dynamic use of shared memory
l Concurrent and overlapping operations by 

threads or processes

A B C
Base
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A B C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Local variables
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A B C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

X has de-referenced the 
link (pointer) to B
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The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Another thread, Y, finds and deletes
(removes) B from the active structure

Thread Y
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The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Thread Y wants to reclaim(/free) B
Thread Y?

Property I: A (de-)referenced node is not reclaimed
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A

C

D

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

?
The nodes B and C 
are deleted from the 
active structure.

B

Property II: Links in a (de-)referenced node 
should always be de-referencable.
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The Lock-Free Memory Reclamation 
Problem

Thread X

Base

A
1

D
2

B
1

C
1

Solutions?
¢ Garbage collection?
¢ Reference counting?
Needs to be lock-free!
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Lock-free synchronization
¢ A lock-free shared data structure
l Allows concurrent operations without enforcing 

mutual exclusion (i.e. no locks)
l Guarantees that at least one operation always 

makes progress
l Avoids:

• Blocking, deadlock and priority inversion

¢ Hardware synchronization primitives
l Built into CPU and memory system

• Typically: atomic read-modify-write instructions
l Examples

• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional
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¢ Lock-free Reference Counting
l Valois + Michael & Scott 1995
l Detlefs et al. 2001
l Herlihy et al. 2002

l Remaining issues
l A slow thread might prevent reclamation
l Cyclic garbage
l Implementation practicality issues

l Reference-count field MUST remain forever (Valois + Michael & 
Scott)

l Needs double word CAS  (Detlefs et al.)
l Needs double width CAS (Herlihy, 2002)
l Large overhead

Previous solutions

B
1

C
1

A
1Slow
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Our approach – The basic idea

¢ Combine the best of 
l Hazard pointers (Michael 2002)

• Tracks references from threads
• Fast de-reference
• Upper bound on the amount of unreclaimed deleted nodes 
• Compatible with standard memory allocators

l Reference counting
• Tracks references from links in shared memory

• Manages links within dynamic nodes
• Safe to traverse links (also) in deleted nodes

¢ Practical
l Uses only single-word Compare-And-Swap
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The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Thread X

Deletion list
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The basic idea

¢ API
l DeRefLink(Base)
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

Thread X

R
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Thread X

R

The basic idea

¢ API
l DeRefLink
l ReleaseRef(R)
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list
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Thread X

new

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

D
0
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Thread X

C

new

R

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef(new.next, R)
l NewNode
l DeleteNode

C
Hazard pointers (Thread X)

Base

A
1

B
1

C
2

Deletion list

D
0
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Thread X

A

B
new

prev

old

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef(prev.next, old, new)

l StoreRef
l NewNode
l DeleteNode

BA
Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1
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Thread X

A

_
new

prev

old

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode(old)

Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1
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Breaking chains of garbage

Hazard pointers (Thread Y)

Base

A
1

D
1

E
2

Thread X

Deletion list

B
0

C
1

¢ Clean-up deleted nodes
l Update links to point to 

live nodes
l Performed on nodes in

• Own deletion list
• All deletion lists
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Breaking chains of garbage

¢ Clean-up deleted nodes
l Update links to point to 

live nodes
l Performed on nodes in

• Own deletion list
• All deletion lists

Hazard pointers (Thread Y)

Base

A
1

D
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E
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Thread X

Deletion list

B
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Bound on unreclaimed nodes

¢ A deleted node can be reclaimed when
l The reference count is zero and
l No hazard pointer is pointing to it and
l There is no ongoing clean-up of this node

¢ With a rate relative to the number of threads of 
l Scanning hazard pointers
l Cleaning up nodes as needed

¢ Then the maximum size of each deletion list depends on
l The number of hazard pointers
l The number of links per node
l The number of threads
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Experimental evaluation

¢ Lock-free deque (Sundell and Tsigas 2004)
(deque – double-ended queue)

l The algorithm needs traversal of deleted nodes
l Time for 10000 random operations/thread

¢ Tested memory reclamation schemes
l Reference counting, Valois et al.
l The new algorithm

¢ Systems
l 4 processor Xeon PC / Linux (UMA)
l 8 processor SGI Origin 2000 / IRIX (NUMA)
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Experimental evaluation
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Experimental evaluation
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Conclusions

¢ First lock-free memory reclamation scheme 
that
l Only uses atomic primitives available in 

contemporary architectures
l Guarantees safety of

• Local and
• Global references

l Has an upper bound on the amount of deleted 
but unreclaimed nodes

l Allows arbitrary reuse of reclaimed memory
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Questions?

¢ Contact Information:
l Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

l Email:
andersg @ cs.chalmers.se

l Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

l Implementation
http://www.noble-library.org/
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Conclusions

¢ First lock-free memory reclamation scheme 
that
l Only uses atomic primitives available in 

contemporary architectures
l Guarantees safety of

• Local and
• Global references

l Has an upper bound on the amount of deleted 
but unreclaimed nodes
( Bound: N * N * (k + L_max + a + 1) )

l Allows arbitrary reuse of reclaimed memory


