
Efficient and Reliable
Lock-Free Memory

Reclamation
Based on Reference Counting

Anders Gidenstam, Marina Papatriantafilou,
Håkan Sundell and Philippas Tsigas

Distributed Computing and Systems group,
Department of Computer Science and Engineering,

Chalmers University of Technology

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
2

Outline

¢ Introduction
l The Problem
l Lock-free synchronization

¢ Our solution
l Idea
l Properties

¢ Experiments
¢ Conclusions

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
3

The Lock-Free Memory Reclamation
Problem

¢ Concurrent shared data structure
l Dynamic use of shared memory
l Concurrent and overlapping operations by

threads or processes

A B C
Base

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
4

A B C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Local variables

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
5

A B C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

X has de-referenced the
link (pointer) to B

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
6

A

B

C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Another thread, Y, finds and deletes
(removes) B from the active structure

Thread Y

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
7

A

B

C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Thread Y wants to reclaim(/free) B
Thread Y?

Property I: A (de-)referenced node is not reclaimed

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
8

A

C

D

The Lock-Free Memory Reclamation
Problem

Thread X

Base

?
The nodes B and C
are deleted from the
active structure.

B

Property II: Links in a (de-)referenced node
should always be de-referencable.

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
9

The Lock-Free Memory Reclamation
Problem

Thread X

Base

A
1

D
2

B
1

C
1

Solutions?
¢ Garbage collection?
¢ Reference counting?
Needs to be lock-free!

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
10

Lock-free synchronization
¢ A lock-free shared data structure
l Allows concurrent operations without enforcing

mutual exclusion (i.e. no locks)
l Guarantees that at least one operation always

makes progress
l Avoids:

• Blocking, deadlock and priority inversion

¢ Hardware synchronization primitives
l Built into CPU and memory system

• Typically: atomic read-modify-write instructions
l Examples

• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
11

¢ Lock-free Reference Counting
l Valois + Michael & Scott 1995
l Detlefs et al. 2001
l Herlihy et al. 2002

l Remaining issues
l A slow thread might prevent reclamation
l Cyclic garbage
l Implementation practicality issues

l Reference-count field MUST remain forever (Valois + Michael &
Scott)

l Needs double word CAS (Detlefs et al.)
l Needs double width CAS (Herlihy, 2002)
l Large overhead

Previous solutions

B
1

C
1

A
1Slow

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
12

Our approach – The basic idea

¢ Combine the best of
l Hazard pointers (Michael 2002)

• Tracks references from threads
• Fast de-reference
• Upper bound on the amount of unreclaimed deleted nodes
• Compatible with standard memory allocators

l Reference counting
• Tracks references from links in shared memory

• Manages links within dynamic nodes
• Safe to traverse links (also) in deleted nodes

¢ Practical
l Uses only single-word Compare-And-Swap

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
13

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Thread X

Deletion list

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
14

The basic idea

¢ API
l DeRefLink(Base)
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

Thread X

R

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
15

Thread X

R

The basic idea

¢ API
l DeRefLink
l ReleaseRef(R)
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
16

Thread X

new

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

D
0

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
17

Thread X

C

new

R

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef(new.next, R)
l NewNode
l DeleteNode

C
Hazard pointers (Thread X)

Base

A
1

B
1

C
2

Deletion list

D
0

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
18

Thread X

A

B
new

prev

old

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef(prev.next, old, new)

l StoreRef
l NewNode
l DeleteNode

BA
Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
19

Thread X

A

_
new

prev

old

The basic idea

¢ API
l DeRefLink
l ReleaseRef
l CompareAndSwapRef
l StoreRef
l NewNode
l DeleteNode(old)

Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
20

Breaking chains of garbage

Hazard pointers (Thread Y)

Base

A
1

D
1

E
2

Thread X

Deletion list

B
0

C
1

¢ Clean-up deleted nodes
l Update links to point to

live nodes
l Performed on nodes in

• Own deletion list
• All deletion lists

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
21

Breaking chains of garbage

¢ Clean-up deleted nodes
l Update links to point to

live nodes
l Performed on nodes in

• Own deletion list
• All deletion lists

Hazard pointers (Thread Y)

Base

A
1

D
1

E
3

Thread X

Deletion list

B
0

C
0

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
22

Bound on unreclaimed nodes

¢ A deleted node can be reclaimed when
l The reference count is zero and
l No hazard pointer is pointing to it and
l There is no ongoing clean-up of this node

¢ With a rate relative to the number of threads of
l Scanning hazard pointers
l Cleaning up nodes as needed

¢ Then the maximum size of each deletion list depends on
l The number of hazard pointers
l The number of links per node
l The number of threads

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
23

Experimental evaluation

¢ Lock-free deque (Sundell and Tsigas 2004)
(deque – double-ended queue)

l The algorithm needs traversal of deleted nodes
l Time for 10000 random operations/thread

¢ Tested memory reclamation schemes
l Reference counting, Valois et al.
l The new algorithm

¢ Systems
l 4 processor Xeon PC / Linux (UMA)
l 8 processor SGI Origin 2000 / IRIX (NUMA)

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
24

Experimental evaluation

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
25

Experimental evaluation

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
26

Conclusions

¢ First lock-free memory reclamation scheme
that
l Only uses atomic primitives available in

contemporary architectures
l Guarantees safety of

• Local and
• Global references

l Has an upper bound on the amount of deleted
but unreclaimed nodes

l Allows arbitrary reuse of reclaimed memory

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
27

Questions?

¢ Contact Information:
l Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

l Email:
andersg @ cs.chalmers.se

l Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

l Implementation
http://www.noble-library.org/

2005
Anders Gidenstam, Distributed Computing and

Systems, Chalmers
28

Conclusions

¢ First lock-free memory reclamation scheme
that
l Only uses atomic primitives available in

contemporary architectures
l Guarantees safety of

• Local and
• Global references

l Has an upper bound on the amount of deleted
but unreclaimed nodes
(Bound: N * N * (k + L_max + a + 1))

l Allows arbitrary reuse of reclaimed memory

