
A Lock-Free Algorithm

for

Concurrent Bags

Håkan Sundell

Anders Gidenstam

Marina Papatriantafilou

Philippas Tsigas

Distributed Computing and Systems group,

Department of Computer Science and Engineering,

Chalmers University of Technology

School of business and informatics

University of Borås



10/06/2011
Anders Gidenstam, University of Borås 2

Outline

Introduction

Lock-free synchronization

The Problem & Related work

The new lock-free bag algorithm

Experiments

Conclusions



10/06/2011
Anders Gidenstam, University of Borås 3

Synchronization on a shared object

 Lock-free synchronization
 Allows concurrent operations without enforcing 

mutual exclusion

 Avoids:
• Blocking (or busy waiting), convoy effects, priority 

inversion and risk of deadlock

 Progress Guarantee
• At least one operation always makes progress

P1 P2

P3
P4



10/06/2011
Anders Gidenstam, University of Borås 4

Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1



10/06/2011
Anders Gidenstam, University of Borås 5

Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1

O1 O3 O2



 Processes can read/write single 
memory words

 Model: Sequential consistency

 Synchronization primitives

 Built into CPU and memory system

 Atomic read-modify-write (i.e. a 
critical section of one instruction)

 Examples: Compare-and-Swap, 
Load-Linked / Store-Conditional

System Model

10/06/2011
Anders Gidenstam, University of Borås 6

CPU CPU

Shared Memory



10/06/2011
Anders Gidenstam, University of Borås 7

Outline

Introduction

Lock-free synchronization

The Problem & Related work

The new lock-free bag algorithm

Experiments

Conclusions



The Problem:

Concurrent bag shared data object
 Basic operations: Add() and TryRemoveAny()

 Elements in the bag are unordered

 Desired Properties

• Linearizable and lock-free

• Linearizable means: Add(A) -> TryRemoveAny() returns A;

if TryRemoveAny() returns EMPTY then the bag really was empty

• Dynamic size (maximum only limited by available memory)

• Bounded memory usage (in terms of live contents)

• Fast on current systems
10/06/2011

Anders Gidenstam, University of Borås 8

E
C

B

DA F

G



The Problem:

Concurrent bag shared data object

 Motivation

 Useful for communication/work distribution, e.g.

• Implementation of Parallel foreach / forall

• Between (unordered) pipeline stages

 Abstract data type available in some languages

• Bag / Producer-Consumer Collection

• .NET C#

• …

 A concurrent bag can be implemented with 

other data structures, e.g. queue, stack, …

• But “better” service comes at a price
10/06/2011

Anders Gidenstam, University of Borås 9



Related Work:

Lock-free Multi-P/C Queues
 [Michael & Scott, 1996]

 Linked-list, one element/node

 Global shared head and tail pointers

 [Tsigas & Zhang, 2001]

 Static circular array of elements
• Two different NULL values for distinguishing initially empty from dequeued elements

 Global shared head and tail indices, lazily updated

 [Michael & Scott, 1996] +

Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 Same as the above + elimination of concurrent pairs of enqueue and 

dequeue when the queue is near empty

 [Hoffman, Shalev & Shavit, 2007] Baskets queue

 Linked-list, one element/node

 Reduces contention between concurrent enqueues after conflict

 Uses stronger memory management than M&S (SLFRC or Beware&Cleanup)

10/06/2011
Anders Gidenstam, University of Borås 10

0N-1



Related Work:

Lock-free Multi-P/C Stacks and Pools

10/06/2011
Anders Gidenstam, University of Borås 11

 L-F stacks

 [Michael, 2004]

 Linked-list, one element/node

 Global shared head pointer

 [Michael, 2004] +

Elimination [Hendler, Shavit & Yerushalami, 2004]

 Same as the above + elimination of concurrent pairs of push 

and pop.

 L-F pool

 [Afek, Korland, Natanzon & Shavit, 2010]

 Tree of balancers with elimination + queues.



10/06/2011
Anders Gidenstam, University of Borås 12

Outline

Introduction

Lock-free synchronization

The Problem & Related work

The new lock-free bag algorithm

Experiments

Conclusions



The Algorithm

Basic Idea
 Linked-lists of array blocks

 One list per thread

• Always used by Add()

• TryRemoveAny() looks

there first

 Add()s by different

threads do not contend

 A TryRemoveAny() has

a large number of blocks

to choose from

• Low risk for contention

 Static thread-local storage (TLS)

 Used to avoid reading/writing shared state
10/06/2011

Anders Gidenstam, University of Borås 13



The Algorithm

Basic Idea
 Add()

 Item is inserted in an 

empty slot in the first 

array block in the 

thread’s list

 A new first block is 

added when all slots 

have been used

 The current slot index 

is stored in TLS

10/06/2011
Anders Gidenstam, University of Borås 14



The Algorithm

Basic Idea
 TryRemoveAny()

 The thread first scans 

the first block in its list 

(from the current 

index in TLS)

 When an item is 

found it is removed 

via CAS

 If the block is empty it 

is removed from the 

list

10/06/2011
Anders Gidenstam, University of Borås 15



The Algorithm

Issues

 Finding items when 

own list is empty

 Detecting that the bag 

is empty

 Managing the linked 

lists

10/06/2011
Anders Gidenstam, University of Borås 16



The Algorithm

Finding items when the 

own list is empty

 Steal items from 

blocks belonging to 

other threads

• Hence, CAS needed to 

remove items

 Never leave a block 

until it is empty
• Help removing empty 

blocks

10/06/2011
Anders Gidenstam, University of Borås 17



The Algorithm

Detecting that the bag 

is empty

 No single place to look

 Scan all blocks of all 

threads

• Items may be added 

concurrently

• Items may be removed 

concurrently

10/06/2011
Anders Gidenstam, University of Borås 18



The Algorithm

Notification mechanism
 Per-block bit field

• One bit for each thread

• All bits cleared by Add()

• Thieves set their bit before 

scanning the block

If the bit is still set for all 

blocks when the thief

rescans the bag is 

empty?

10/06/2011
Anders Gidenstam, University of Borås 19



The Algorithm

10/06/2011
Anders Gidenstam, University of Borås 20

Notification mechanism
 No, there can still be one 

pending Add per other 

thread

• Cleared the notify bits 

before the thief started 

scanning

• Items can show up and 

disappear (removed) during 

the scan



The Algorithm

10/06/2011
Anders Gidenstam, University of Borås 21

Notification mechanism
 No, there can still be one 

pending Add per other 

thread

• Cleared the notify bits 

before the thief started 

scanning

• Items can show up and 

disappear (removed) during 

the scan

 Rescan everything 

#threads+1 times

• if found empty in all scans it 

truly was empty

Pending Add

removed before

rescan reaches here 

Pending Add

after rescan was

here



The Algorithm

Managing the linked lists
 Removing blocks

 When the block is scanned

and found empty it is marked

logically deleted, with mark1

• By owner

• No problem

• By thief

• Must not be the first block in

the linked-list since owner may

add items there

• Mark the preceding block with

mark2 first

• The block cannot be the first

• Prevents the block from becoming the first block

 Seeing mark1 or mark2 invokes helping

 Memory management

 (Modified) Hazard pointers scheme [Michael, 2002]

10/06/2011
Anders Gidenstam, University of Borås 22



The Algorithm

Managing the linked lists
 Properties

 Only the owner can remove the first block

 The last block of each linked-list cannot be removed

 Thieves can remove any other block found empty

 So

 After an linked list has been scanned by 

TryRemoveAny() there can be at most 2 empty 

blocks in it

 Hence, a thread finding the bag empty will have no 

more than 2*#threads blocks to traverse once it has 

helped any pending removals (at most 1 per thread)

10/06/2011
Anders Gidenstam, University of Borås 23



10/06/2011
Anders Gidenstam, University of Borås 24

Outline

Introduction

Lock-free synchronization

The Problem & Related work

The new lock-free bag algorithm

Experiments

Conclusions



10/06/2011
Anders Gidenstam, University of Borås 25

Experimental evaluation

 Micro benchmark 
 Threads execute Add and TryRemoveAny operations on a 

shared bag
• High contention

 Test Configurations
1. Random 50% / 50%, initial size 0

2. 1 Producer / N-1 Consumers, initial size 0

3. N-1 Producers / 1 Consumer, initial size 0

4. N/2 Producers / N/2 Consumers, initial size 0

 Measured throughput in items/sec
• #TryRemoveAny not returning EMPTY

 Application
 Parallel computation of Mandelbrot set

 Producer/Consumer pattern



10/06/2011
Anders Gidenstam, University of Borås 26

Experimental evaluation

 Algorithms

 L-F queue [Michael & Scott, 1996]

 L-F queue [Michael & Scott, 1996] +
Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 L-F queue [Tsigas & Zhang, 2001]

 L-F queue [Hoffman, Shalev & Shavit, 2007]

 L-F stack [Michael, 2004]

 L-F stack [Michael, 2004] +
Elimination [Hendler, Shavit & Yerushalami, 2010]

 L-F pool [Afek, Korland, Natanzon & Shavit, 2010]

 The new L-F bag [Gidenstam, Sundell, Papatriantafilou & Tsigas, 2011]

 PC Platform

 CPU: 2x Intel Xeon X5660 @ 2.8 GHz

 6 cores per CPU with 2 hardware threads each => 12 cores, 24 hw threads

 RAM: 12 GB DDR3 @ 1333 MHz

 Windows 7 64-bit



10/06/2011
Anders Gidenstam, University of Borås 27

Experimental evaluation (i)



10/06/2011
Anders Gidenstam, University of Borås 28

Experimental evaluation (ii)



10/06/2011
Anders Gidenstam, University of Borås 29

Experimental evaluation (iii)



10/06/2011
Anders Gidenstam, University of Borås 30

Experimental evaluation (iv)



Experimental evaluation (v)
Parallel application for the Mandelbrot set

 16x16 chunks: Large work units

=> Low contention on the shared data structure (bag)

 2x2 chunks: Small work units

=> High contention. The bag implementation matters
10/06/2011

Anders Gidenstam, University of Borås 31



Conclusions

 Lock free and linearizable algorithm for a 

concurrent bag producer/consumer collection data 

structure

 Distributed design, promoting access-parallelism.

 Exploiting thread-local static storage.

 Dynamic in size via lock-free memory management.

 Only requires atomic primitives available in 

contemporary systems.

10/06/2011
Anders Gidenstam, University of Borås 32



10/06/2011
Anders Gidenstam, University of Borås 33

Thank you for listening!

Questions?


