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Synchronization on a shared object

 Lock-free synchronization
 Allows concurrent operations without enforcing 

mutual exclusion

 Avoids:
• Blocking (or busy waiting), convoy effects, priority 

inversion and risk of deadlock

 Progress Guarantee
• At least one operation always makes progress
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Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1
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 Processes can read/write single 
memory words

 Model: Sequential consistency

 Synchronization primitives

 Built into CPU and memory system

 Atomic read-modify-write (i.e. a 
critical section of one instruction)

 Examples: Compare-and-Swap, 
Load-Linked / Store-Conditional

System Model
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The Problem:

Concurrent bag shared data object
 Basic operations: Add() and TryRemoveAny()

 Elements in the bag are unordered

 Desired Properties

• Linearizable and lock-free

• Linearizable means: Add(A) -> TryRemoveAny() returns A;

if TryRemoveAny() returns EMPTY then the bag really was empty

• Dynamic size (maximum only limited by available memory)

• Bounded memory usage (in terms of live contents)

• Fast on current systems
10/06/2011
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The Problem:

Concurrent bag shared data object

 Motivation

 Useful for communication/work distribution, e.g.

• Implementation of Parallel foreach / forall

• Between (unordered) pipeline stages

 Abstract data type available in some languages

• Bag / Producer-Consumer Collection

• .NET C#

• …

 A concurrent bag can be implemented with 

other data structures, e.g. queue, stack, …

• But “better” service comes at a price
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Related Work:

Lock-free Multi-P/C Queues
 [Michael & Scott, 1996]

 Linked-list, one element/node

 Global shared head and tail pointers

 [Tsigas & Zhang, 2001]

 Static circular array of elements
• Two different NULL values for distinguishing initially empty from dequeued elements

 Global shared head and tail indices, lazily updated

 [Michael & Scott, 1996] +

Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 Same as the above + elimination of concurrent pairs of enqueue and 

dequeue when the queue is near empty

 [Hoffman, Shalev & Shavit, 2007] Baskets queue

 Linked-list, one element/node

 Reduces contention between concurrent enqueues after conflict

 Uses stronger memory management than M&S (SLFRC or Beware&Cleanup)
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Related Work:

Lock-free Multi-P/C Stacks and Pools
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 L-F stacks

 [Michael, 2004]

 Linked-list, one element/node

 Global shared head pointer

 [Michael, 2004] +

Elimination [Hendler, Shavit & Yerushalami, 2004]

 Same as the above + elimination of concurrent pairs of push 

and pop.

 L-F pool

 [Afek, Korland, Natanzon & Shavit, 2010]

 Tree of balancers with elimination + queues.
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The Algorithm

Basic Idea
 Linked-lists of array blocks

 One list per thread

• Always used by Add()

• TryRemoveAny() looks

there first

 Add()s by different

threads do not contend

 A TryRemoveAny() has

a large number of blocks

to choose from

• Low risk for contention

 Static thread-local storage (TLS)

 Used to avoid reading/writing shared state
10/06/2011
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The Algorithm

Basic Idea
 Add()

 Item is inserted in an 

empty slot in the first 

array block in the 

thread’s list

 A new first block is 

added when all slots 

have been used

 The current slot index 

is stored in TLS
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The Algorithm

Basic Idea
 TryRemoveAny()

 The thread first scans 

the first block in its list 

(from the current 

index in TLS)

 When an item is 

found it is removed 

via CAS

 If the block is empty it 

is removed from the 

list
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The Algorithm

Issues

 Finding items when 

own list is empty

 Detecting that the bag 

is empty

 Managing the linked 

lists

10/06/2011
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The Algorithm

Finding items when the 

own list is empty

 Steal items from 

blocks belonging to 

other threads

• Hence, CAS needed to 

remove items

 Never leave a block 

until it is empty
• Help removing empty 

blocks
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The Algorithm

Detecting that the bag 

is empty

 No single place to look

 Scan all blocks of all 

threads

• Items may be added 

concurrently

• Items may be removed 

concurrently
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The Algorithm

Notification mechanism
 Per-block bit field

• One bit for each thread

• All bits cleared by Add()

• Thieves set their bit before 

scanning the block

If the bit is still set for all 

blocks when the thief

rescans the bag is 

empty?
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The Algorithm
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Notification mechanism
 No, there can still be one 

pending Add per other 

thread

• Cleared the notify bits 

before the thief started 

scanning

• Items can show up and 

disappear (removed) during 

the scan



The Algorithm
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Notification mechanism
 No, there can still be one 

pending Add per other 

thread

• Cleared the notify bits 

before the thief started 

scanning

• Items can show up and 

disappear (removed) during 

the scan

 Rescan everything 

#threads+1 times

• if found empty in all scans it 

truly was empty

Pending Add

removed before

rescan reaches here 

Pending Add

after rescan was

here



The Algorithm

Managing the linked lists
 Removing blocks

 When the block is scanned

and found empty it is marked

logically deleted, with mark1

• By owner

• No problem

• By thief

• Must not be the first block in

the linked-list since owner may

add items there

• Mark the preceding block with

mark2 first

• The block cannot be the first

• Prevents the block from becoming the first block

 Seeing mark1 or mark2 invokes helping

 Memory management

 (Modified) Hazard pointers scheme [Michael, 2002]
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The Algorithm

Managing the linked lists
 Properties

 Only the owner can remove the first block

 The last block of each linked-list cannot be removed

 Thieves can remove any other block found empty

 So

 After an linked list has been scanned by 

TryRemoveAny() there can be at most 2 empty 

blocks in it

 Hence, a thread finding the bag empty will have no 

more than 2*#threads blocks to traverse once it has 

helped any pending removals (at most 1 per thread)
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Experimental evaluation

 Micro benchmark 
 Threads execute Add and TryRemoveAny operations on a 

shared bag
• High contention

 Test Configurations
1. Random 50% / 50%, initial size 0

2. 1 Producer / N-1 Consumers, initial size 0

3. N-1 Producers / 1 Consumer, initial size 0

4. N/2 Producers / N/2 Consumers, initial size 0

 Measured throughput in items/sec
• #TryRemoveAny not returning EMPTY

 Application
 Parallel computation of Mandelbrot set

 Producer/Consumer pattern
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Experimental evaluation

 Algorithms

 L-F queue [Michael & Scott, 1996]

 L-F queue [Michael & Scott, 1996] +
Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 L-F queue [Tsigas & Zhang, 2001]

 L-F queue [Hoffman, Shalev & Shavit, 2007]

 L-F stack [Michael, 2004]

 L-F stack [Michael, 2004] +
Elimination [Hendler, Shavit & Yerushalami, 2010]

 L-F pool [Afek, Korland, Natanzon & Shavit, 2010]

 The new L-F bag [Gidenstam, Sundell, Papatriantafilou & Tsigas, 2011]

 PC Platform

 CPU: 2x Intel Xeon X5660 @ 2.8 GHz

 6 cores per CPU with 2 hardware threads each => 12 cores, 24 hw threads

 RAM: 12 GB DDR3 @ 1333 MHz

 Windows 7 64-bit
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Experimental evaluation (i)
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Experimental evaluation (ii)
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Experimental evaluation (iii)
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Experimental evaluation (iv)



Experimental evaluation (v)
Parallel application for the Mandelbrot set

 16x16 chunks: Large work units

=> Low contention on the shared data structure (bag)

 2x2 chunks: Small work units

=> High contention. The bag implementation matters
10/06/2011
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Conclusions

 Lock free and linearizable algorithm for a 

concurrent bag producer/consumer collection data 

structure

 Distributed design, promoting access-parallelism.

 Exploiting thread-local static storage.

 Dynamic in size via lock-free memory management.

 Only requires atomic primitives available in 

contemporary systems.
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Thank you for listening!

Questions?


