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Abstract

Synchronization, consistency and scalability are important issues in the de-
sign of concurrent computer system services. In this thesis we study the appli-
cation of optimistic and scalable methods in concurrent system services. In a
distributed setting we study scalable tracking of the causal relations between
events, lightweight information dissemination in optimistic causal order in dis-
tributed systems and fault-tolerant and dynamic resource sharing. Further, we
study scalable memory allocation, memory reclamation, threading, thread syn-
chronization and data structures in shared memory systems. For each of the
services we study we give the design of algorithms using optimistic methods,
assess the correctness and analyze the behaviour of the algorithm, and in most
cases describe implementations and perform experimental studies comparing the
proposed algorithms to “traditional” approaches.

We present a study of the accuracy of plausible timestamps for scalable event
tracking in large systems. We analyze how these clocks may relate causally in-
dependent event pairs and based on the analysis we propose two new clock
algorithms to satisfy the analysis criteria. We propose an information dissemi-
nation service providing optimistic causal order called lightweight causal cluster
consistency. It offers scalable behaviour, low message size overhead and high-
probability reliability guarantees for e.g. multi-peer collaborative applications.
A key component in the dissemination service is a dynamic and fault-tolerant
cluster management algorithm, which manages a set of tickets/resources such
that each ticket has at most one owner at a time. In the dissemination service
this algorithm manages senders and enables the use of small fixed size vector
clocks. We present a lock-free concurrent memory allocator, NBmalloc, de-
signed to enhance performance and scalability on multiprocessors which also
shows in our experimental evaluation. We present a lock-free memory reclama-
tion algorithm for use in the implementation of lock-free data structures. Our
algorithm is the first practical one that has all the following features: (i) guar-
antees the safety of local as well as global references, (ii) provides an upper
bound of deleted but not yet reclaimed nodes, (iii) is compatible with standard
memory allocation schemes. We also present LFthreads, a user-level thread li-
brary that is implemented entirely using lock-free methods aiming for increased
scalability and efficiency over traditional thread libraries.

Keywords: synchronization, logical clocks, plausible clocks, time stamp-
ing system, event ordering, group communication, optimistic causal order, non-
blocking, lock-free, memory management, memory reclamation, threading, atomic
registers.
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Chapter 1

Introduction and
background

In this thesis we study the issue of synchronization and consistency in concurrent
computer system services. Any tasks that are undertaken in cooperation by a
number of entities, let them be people or computers, require some form of
synchronization. As we all experience in everyday life, synchronized cooperation
often works best when communication between the cooperators is extensive and
instantaneous, as, for example, when the cooperators are at the same location.
When communication becomes more limited, synchronized cooperation becomes
more difficult.

Synchronization is also closely tied to consistency, which is how well the
participant’s views of the task correspond to each other and to the global state
of the system. Both synchronization and consistency influence the scalability,
that is, how much faster the cooperative task can be solved when the number
of collaborators is increased. Ideally, twice as many cooperators should be able
to perform a task twice as fast, but this is not necessarily true for all problems
and there is often an upper limit where additional collaborators do not decrease
the time required to perform the task at all.

The main topic of this thesis is to study the effect of optimistic and fine-
grained synchronization on several key system services. In a distributed message
passing setting we study scalable tracking of the causal relations between events
using logical clocks; in the same communication model we also study lightweight
information dissemination in optimistic causal order and fault-tolerant and dy-
namic distributed cluster management. Further, in shared memory systems we
study scalable and lock-free memory allocation, memory reclamation for use
in lock-free data structures, multithreading and thread synchronization as well
as lock-free data structures useful in the above services. For each of the ser-
vices studied we give the design of algorithms using optimistic methods and
fine-grained synchronization, assess the correctness and analyze the behaviour
of the algorithm, and in most cases describe implementations and experimental

1
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studies comparing the proposed algorithms to “traditional” approaches.
This chapter is structured as follows: Sections 1.1 and 1.2 introduce the

basics of concurrent computation and concurrent system models; Section 1.3
describes logical time and logical clocks; Section 1.4 describes group communica-
tion and message orderings; Section 1.5 introduces non-blocking synchronization
and data structures; Section 1.6 describes system services and synchronization;
and, finally, Section 1.7 summarizes the contributions of this thesis.

1.1 Concurrent computation

Concurrent computer systems can distinguished into two categories depending
on the communication paradigm used, namely (i) message passing systems and
(ii) shared memory systems, both of which will be discussed below. From an
abstract point of view, a concurrent system consists of a number of sequential
processes, we denote them p1, p2, . . . , pn, which each executes a sequence of
steps, called events. We call the sequence of events executed by process pi

in an execution of the system the local history for that process and denote it
Hi = e1

i e
2
i . . . . The order in which the events occur in the local history of a

process p is called the program order of p. The whole execution of the system
is called the global history, denoted H, and is a partially ordered set of events
formed by the union of the local histories of the processes.

The events of an execution can be ordered according to the causal prece-
dence relation, introduced by Lamport in [Lam78], and usually denoted by →.
It is also known as the happened-before or could have influenced relation. The
causal precedence relation orders two events that occurred in the same process
according to the program order and orders two events that occurred in different
processes if there is some way the first of them could have influenced the sec-
ond. That is, if some form of communication took place between the involved
processes; for example in a message-passing system a message from the process
of the first event sent after that event could be received by the other process be-
fore (or at) the second event; in a shared memory system the first process might
write to a memory location that is later read by the second process. Events
that are not related by the causal precedence relation are concurrent, which is
denoted a‖b for two events a and b.

The global history of an execution together with the causal precedence re-
lation form a partially ordered set, representing the distributed computation
and is often presented in a time-space diagram, as shown in Figure 1.1. The
arrows between some event pairs in the figure represent the causal precedences
introduced by these events.

The processes in a concurrent system are commonly assumed to be asyn-
chronous, that is, there is no bound on how fast or slow each processor executes
its steps. If, on the other hand, there is some bound on the processors’ absolute
or relative speeds the system is said to be synchronous.
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Figure 1.1: A time-space diagram of a distributed computation.

1.1.1 Scalability in concurrent systems

One important property of distributed systems and algorithms is scalability,
that is, how well the system can handle an increased number of users and/or
resources. Ideally, twice as many collaborators should be able to perform a task
at least twice as fast, but this is not always true and there is often an upper
limit where additional collaborators do not decrease the time required to solve
a particular task at all. Consider, for example, the task of counting the number
of cards in a standard deck of cards: going from one to two counters is likely
to be about twice as fast, while going from 10 to 20 counters will most likely
not be faster since the overhead of splitting and distributing the deck before the
counting can start and the final summation of the counts will be high. However,
if the deck contained 520 cards instead of 52 then it is likely that 20 counters
would be faster than 10.

In shared memory systems a typical example would be that we have a con-
current program for solving some problem and want to solve large problem
instances with it. The program is said to be scalable if the time needed to solve
a problem instance is halved when we double the number of processors avail-
able to the program. In message passing systems scalability is often considered
in terms of how the overhead, i.e. the number of messages needed and/or the
message size, changes as the number of participating processes is increased.

Scalability is one of the major concerns in the development of concurrent and
distributed algorithms as many systems and applications have a tendency to
grow significantly over time, for example peer-to-peer systems and the Internet
itself.
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1.2 Concurrent system types

As mentioned above, concurrent computer systems can be distinguished based
on the communication paradigm used.

A message passing system consists of a set of sequential processes (sometimes
also called nodes) and a network or some other communication media that allows
the processes to send messages to each other. This type of systems is often also
physically distributed, that is, the processes are located at different locations.

A shared memory system consists of a set of sequential processes and a shared
memory that all processes can read from and write to, thereby allowing them
to communicate. While a distributed message passing system often is a group
of separate computers working together, a shared memory system usually is one
computer with several processors sharing the same memory. The key feature
of such a computer, called a shared memory multiprocessor, is that processors
share a single memory address space which they can read/write to [PH98].

We can view an execution on a multiprocessor system in almost the same
formalism that we use for a message passing system by viewing a “send” event
as a “write” to a shared memory location and a “receive” event as a “read”
from the same location.

While most shared memory systems have special hardware for handling
memory transactions between the interconnected processors and the memory,
it is also possible to implement a shared memory abstraction in software on
a pure message passing system, such as a set of workstations. This is called
distributed shared memory (DSM) and there exist many different algorithms for
it. Some examples are the algorithms by Li and Hudak [LH89] and Ahamad
et al. [AHJ91]. The latency to access shared memory in a software DSM im-
plementation running across an ordinary network may be orders of magnitude
larger than the latency of memory accesses across the dedicated interconnect of
a shared memory multiprocessor machine.

1.2.1 Timing in concurrent systems

Concurrent systems can be further classified into a large number of categories
based on the properties of the processes and the communication media. The
most important of these properties are timeliness properties and failure-models
for processes and communication. In terms of its timeliness properties a concur-
rent system can be either asynchronous or partially to fully synchronous. A brief
overview, from Turek and Shasha in [TS92], of common timeliness properties
for processes is:

• Synchronous processes. The ratios between the processes’ speeds are
bounded, that is, they all make progress at approximately the same rate.

• Asynchronous processes. There are no bounds on the processes’ abso-
lute speed nor on the ratio between them.
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A message passing system has bounded message delay if there is an upper
bound on the time a message can be in transit, otherwise the system has un-
bounded message delay. Further, message delivery is ordered if messages trans-
mitted on a communication channel are guaranteed to be received in the same
order they were sent, or unordered otherwise. The communication system is
point-to-point if each communication channel connects a pair of processes, or
broadcast if a message sent on a channel can be received by many processes.

In shared memory systems the processes are commonly modeled as asyn-
chronous, despite the fact that most real microprocessors are synchronous. One
reason is that most general purpose operating systems use multiprogramming,
which is when several processes share the same processor through time-sharing.
The scheduling of the processes access to a processor is often preemptive, which
together with other events that might delay a process, such as page-faults and
blocking I/O, makes the progress rate of any particular process very difficult to
predict. In some shared memory systems, for instance real-time systems, the
processes are considered synchronous, but in these cases the whole system has
to be designed and analyzed with great care so that the occurrence of events,
such as those mentioned above are eliminated or predictable.

Memory access in shared memory systems

There are two main models for memory access latencies of shared memory multi-
processors, which originally stem from their organization at the hardware level.
The first one is uniform memory access (UMA) and the other one is non-uniform
memory access (NUMA).

In a uniform memory access machine (c.f. Figure 1.2(a)) all processors can
access all parts of the memory with the same latency. Such machines were often
organized much like single processor machines, but with several processors con-
nected to a single memory bus instead of just one as a single processor machine
has. Larger UMA machines may use an interconnect network to connect pro-
cessors to the memory instead of a shared bus since a bus-based design usually
does not scale well as the number of processors increases.

In a non-uniform memory access machine (c.f. Figure 1.2(b)) the processors
experience different latencies when accessing different parts of the memory. In
these machines the main memory and processors are often clustered in nodes,
which are then in turn connected together by an interconnection network. In
such a machine a processor will experience much higher memory latency when
accessing memory located in another node compared to the latency of accessing
the memory in its own node. Internally a NUMA (or UMA) system may closely
resemble or even be a message passing system — its classification as a shared
memory system is based on the programmer’s view of the system.

Memory consistency in shared memory systems

Normally, when reasoning about concurrent programs we consider the shared
memory to be sequentially consistent [Lam79], that is, the effects of all mem-
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Figure 1.2: The structure of uniform and non-uniform memory access systems.

ory accesses by the processes can be arranged into one global totally ordered
sequence that is consistent with the program order of all processes.

Most actual multiprocessor machines, however, only give much weaker guar-
antees on the memory consistency, that is, the memory accesses from different
processors can be interleaved in ways not consistent with sequential consistency.
The reason for this is performance — by relaxing the ordering requirement it is
possible to make memory access faster. Relaxing the ordering works well since
usually the vast majority of all memory accesses done by a processor do not
have to become visible to the other processors in some very specific order for
the program to work as expected. For the memory accesses where the order they
become visible to the other processors is important, these systems provide one
or more memory barrier instructions which must be inserted into the program
around these critical memory accesses.

Two good surveys of memory consistency models are given by Adve and
Gharachorloo [AG96] and by Mosberger [Mos93].
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1.2.2 Failure models in concurrent systems

The most common failure models for processes are:

• No failures. Processes cannot fail.

• Stop-failures. A faulty process ceases to execute steps and will remain
stopped forever.

• Byzantine failures. A faulty process exhibits arbitrary behaviour, i.e.
it can execute any program instead of the intended one.

For communication we have a similar set of failure models:

• No failures. The communication is reliable.

• Omission failures. Messages might disappear.

• Byzantine failures. The message content might be garbled and spurious
messages might be created by the communication channel.

1.2.3 Hardware support for synchronization

A well-studied case of coordination which is a key to the synchronization in
concurrent systems, both in shared memory and message passing ones, is the
Consensus Problem [FLP85, LAA87, TS92]. In the consensus problem a set of
processes each propose a value, usually 0 or 1, and then they all try to decide
on the same one of the proposed values. A correct solution to the consensus
problem needs to fulfill the following three conditions:

• Consistency. All the processes must agree on the same value and all
decisions are final.

• Validity. The agreed-upon value must have been proposed by some pro-
cess.

• Termination. Each process has to decide on a value within a finite
number of steps.

The consensus problem is interesting because it is a basic building block for
solutions to many concurrent problems. It has been shown [FLP85] that it
cannot be solved in an asynchronous message passing or in a read/write shared
memory system model [LAA87, Her91] even when only one process might fail.
As a consequence it is often needed to make some assumptions other than total
asynchrony to solve this and other problems that involve this type of decision.

To be able to solve the consensus problem in a distributed message passing
system we need to add either some timeliness properties or stronger communi-
cation possibilities. There are three minimal cases where consensus is possible
as identified by Dolev et al. in [DDS87]:

1. The processes are synchronous and the message delay is bounded.
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2. The communication is done by totally ordered broadcast.

3. The processes are synchronous and point-to-point messages are ordered.

In shared memory systems it is common to assume the availability of atomic
primitives with stronger synchronization capabilities than just atomic reads and
writes to shared memory and which therefore can solve the consensus problem
by themselves, instead of limiting the asynchrony of the system model.

The inability to solve the consensus problem in an asynchronous system
with shared memory that supports only reads and writes severely limits the
possibilities to write useful concurrent programs. Therefore most multiproces-
sor systems, in addition to reads and writes, also support one or more stronger
hardware synchronization primitives. Such primitives allow a number of pro-
cesses to reach agreement, that is, to solve the aforementioned consensus prob-
lem even when the system is viewed as being fully asynchronous. However, as
shown by Herlihy in [Her91], the strength of these synchronization primitives,
called their consensus number, which is the maximum number of processes they
can solve the consensus problem for when processes are allowed to fail, differs.
Synchronization primitives that have unbounded consensus number are called
universal.

A selection of the more common synchronization primitives is presented in
Figure 1.3. They are:

• Test And Set (TAS), which in one atomic step sets the value of a memory
location to one and returns the previous value of that location;

• Fetch And Add (FAA), which atomically increments the value of a memory
location and return the previous value;

• Compare And Swap (CAS), which in one atomic step replaces the current
value of a memory location with a new value if and only if that current
value is equal to the expected old value; and

• Load Linked / Store Conditional (LL/SC), which work in the following way:
Store Conditional conditionally writes a new value to a word in memory.
The write will succeed if and only if this process previously read the lo-
cation using Load Linked and no other write to this location has occurred
since the Load Linked .

Test And Set and Fetch And Add have consensus number two, while Com-
pare And Swap and Load Linked/Store Conditional are universal, that is, their
consensus number is unbounded. By using a hardware synchronization primi-
tive it is possible to implement other synchronization primitives with the same
or lower consensus number in software, see for example Jayanti [Jay98] and
Moir [Moi97].

While Compare And Swap and the other primitives usually only work on one
memory location at a time, the designer of non-blocking algorithms often finds
her/himself wanting to update several memory locations in one atomic step.
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A few now outdated systems, like those based on the Motorola MC68020 and
above processors, supported a double-word Compare And Swap (DCAS) primi-
tive that worked on two separate memory locations, but unfortunately no cur-
rent system supports similar primitives. It is, however, possible to implement
a multi-word Compare And Swap primitive in software at the expense of more
overhead. Such algorithms have been proposed by Harris in [HFP02] and Ha
and Tsigas in [HT03].

Another way to support atomic updates of more than one memory location
at a time is Transactional Memory introduced by Herlihy and Moss in [HM93].
Transactional memory allows processes to prepare transactions, i.e. sets of
memory reads and writes that will take effect atomically (with respect to other
transactions) when the transaction is committed (or not at all if the transac-
tion is aborted). Access to such transactions could simplify the implementation
of lock-free data structures significantly. However, while transactional memory
can be implemented in hardware most current processors only support software
implementations, which implies considerable overhead. Several algorithms im-
plementing software transactional memory have been proposed, for example the
lock-free ones by Shavit and Touitou [ST95] and by Fraser [Fra04].

A related issue to that of updating several memory words at once is the
size of the memory words the primitives work on. In most systems the atomic
synchronization primitives supported by the hardware work on memory words
of the systems native size, usually either 32 or 64 bits. Some 32 bit systems,
for example Intel IA32 and Motorola PowerPC, however, also support atomic
primitives on long words (64 bit), which gives the algorithm designer some extra
possibilities on these systems.

The Compare And Swap primitives mentioned above have an inherent weak-
ness called the ABA problem which complicates their use. The problem is that
the Compare And Swap primitive cannot detect if the target variable has been
changed from the expected old value A to some other value B and then back to
A again by concurrent processes, so the Compare And Swap will succeed even
though this is likely to be undesirable as the “new” value it commits might be
obsolete.

1.3 Logical time and logical clocks

In an asynchronous system there is no notion of a common global time available
to the processes, so if one needs some ordering to tell how events in the system
are related to each other, one needs to use some form of logical time. The
concept of logical time was introduced by Lamport in [Lam78], where he also
presented an algorithm for establishing a total order of all events in the system.

We call that kind of distributed algorithm a Logical Clock Algorithm or a
Time-Stamping System. A logical clock algorithm P consists of the following
parts:

1. Clocks. Each process has a local data structure called a clock which has
the operations local-update, receive-message-update and read defined.
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function Test And Set (address : pointer to word)
return word

begin atomic
ret := *address;
if tmp = 0 then

*address := 1;
return tmp;

end Test And Set;

function Fetch And Add (address : pointer to integer;
increment : integer) return integer

begin atomic
ret := *address;
*address := ret + increment;
return ret;

end Fetch And Add;

function Compare And Swap (address : pointer to word;
oldvalue : word; newvalue : word) return boolean

begin atomic
if *address = oldvalue then

*address := newvalue;
return true;

else return false;
end Compare And Swap;

Figure 1.3: The synchronization primitives Test And Set, Fetch And Add and
Compare And Swap.
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2. Timestamps. A timestamp is a value read from a clock. Every event has
a timestamp associated with it when the event occurs. Moreover, for a
“send” event, the timestamp is also attached to the sent message.

3. An ordering relation P→ for timestamps which is transitive and irreflexive
and defines a strict partial order over all timestamps.

A time-stamping system is plausible, as defined by Torres-Rojas and Ahamad
in [TRA99], if its ordering of the timestamps of the events in an execution is
compatible with the causal order of the events themselves. More formally we
have ∀a, b ∈ H : (i) P (a) P= P (b) iff a ≡ b; and (ii) if a → b then P (a) P→ P (b),
where a and b are events in an execution H and P (x) denotes the timestamp
assigned to the event x by the algorithm. A time-stamping system characterizes
causality if ∀a, b ∈ H : (i) P (a) P= P (b) iff a ≡ b; (ii) a→ b iff P (a) P→ P (b); (iii)

a‖b iff P (a)
P

‖ P (b).

1.3.1 Lamport Clock

The Lamport Clock, introduced by Lamport in [Lam78], is a plausible time-
stamping system that produces a total order that is compatible with the causal
order over all events in an execution.

The clocks in the algorithm consist of one local integer counter Li for each
process i. Initially, all Lis are set to 0. Each process i increases its local counter
Li when an event occurs at the process. A process i attaches the current value
of Li to each message it sends as a timestamp. When a process j receives a
message from process i it updates its clock Lj to one plus the maximum of
its previous value and the timestamp attached to the message. The ordering
between events can be determined by comparing their timestamps, that is, the
integer value of the local clock when they occurred. If two timestamps have the
same integer value, the process ids of the source processes are used to break
ties.

The ordering produced by the Lamport Clock is a total order compatible
with the causal order. That is, events that are causally ordered will be ordered
in the same way by the Lamport Clock. However, in addition the Lamport
Clock will also order all concurrent events.

1.3.2 Vector Clock

The Vector Clock, which was discovered independently by Mattern [Mat89] and
Fidge [Fid88, Fid91], is a plausible time-stamping system that characterizes
causality. That is, by using vector clock timestamps the exact causal relation
between any two events in the system can be determined.

The clocks and timestamps are both integer vectors with one entry for each
process in the system (c.f. Figure 1.4(a)). This means that the timestamps
become rather large as the number of processes in the system increases. This
is a performance problem since a timestamp has to be attached to every sent
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message. However, Charron-Bost proved in [CB91] that any timestamping sys-
tem that characterizes causality must use timestamps whose size is linear in the
number of processes in the system.

In practice it is sometimes possible to reduce the amount of information that
needs to be attached to each message in order to maintain the vector clocks.
For example, if the communication channels guarantee ordered (FIFO) message
delivery then the compression scheme by Singhal and Kshemkalyani [SK92] can
be used. It reduces the size of timestamps by sending only the clock values
that have changed since the last message to the recipient. Another compression
method that works even when the communication channels are unordered was
introduced by Hélary et al. in [HRMB03]. The basic idea of this method is to
avoid sending the clock entries whose value we know to be less than or equal to
the value of the corresponding entry in the recipients clock. This can be achieved
by using an auxiliary data structure in each node to keep track of which entries
that would be new to what process. Common to both these compression schemes
is that the reduction of the timestamp sizes depends on the execution history of
the system and that there are worst-case scenarios where the timestamp sizes
cannot be reduced.

One application area for vector clocks is in causal broadcast protocols (Bir-
man et al. [BSS91]), that is, protocols that provide an any-to-all message service
that guarantee that causally related messages are always delivered in the right
order to a group of processes. However, also for these protocols their scalability
is decreased by the growing size of the vector clock timestamps. One way to im-
prove scalability, which is proposed in Chapter 3 of this thesis, is to use a more
restricted protocol that allows only a subset (which may change over time) of
the processes to create broadcast messages concurrently. This makes it possible
to perform causal broadcast using a smaller vector clock whose size only de-
pends on the maximum allowed number of concurrently sending processes and
not on the total number of processes in the system.

1.3.3 Plausible Clocks

For many applications it is not necessary to have a timestamping system that
characterizes causality. Instead one that is plausible, that is produces an order-
ing compatible with the causal order, is enough. This opens up the possibility
to use timestamping systems that use much smaller timestamps than Vector
Clocks. This is important in large systems where the overhead of using Vec-
tor Clocks would be high. Applications where such scalable plausible clocks
are an attractive option are, for example, causal consistency protocols for dis-
tributed objects, such as those described by Torres-Rojas et al. in [TRAR98]
and [TRA99], where plausible clocks are used to maintain a local cache of
causally consistent object values at each process, and causal distributed memory
protocols, such as the one by Ahamad et al. in [AHJ91].

The Lamport clock mentioned above is one such timestamping system with
small timestamps. However, as it produces a total order, it does not work well
in applications that benefit performance-wise by being able to detect also when
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Figure 1.4: Examples of the timestamps from different time-stamping systems.

a pair of events is concurrent.
As mentioned above, Torres-Rojas and Ahamad introduced the name plau-

sible clocks for this class of timestamping systems in [TRA99], where they also
proposed a number of plausible clock algorithms which have timestamps of con-
stant size. The most significant of the clock algorithms they proposed is the
R-Entries Vector Clock, which is a similar to a Vector Clock but whose clock
vector has a fixed number (R) of entries. Each entry in the clock vector is shared
by the processes whose ids are congruent modulo R (c.f. Figure 1.4(b)). The
R-entry Vector Clock shows good ordering accuracy even for small timestamp
sizes.

In Chapter 2 we extend the concept of the R-entry Vector Clock to introduce
a new class of fixed size Vector Clocks, called Non-Uniformly Mapped R-Entries
Vector (NUREV) Clocks, which allow the association between process and clock
vector entry to change during the execution (c.f. Figure 1.4(c)). This makes it
possible to construct clock algorithms that achieve very good ordering accuracy
even at small timestamp sizes. Two such algorithms are also presented.

1.4 Group communication

In distributed applications it is not uncommon to have groups of processes that
need to communicate and share information with each other. Such communica-
tion can be of the unicast type, i.e. messages are sent point-to-point from sender
to receiver, or multicast, where each message may have several destinations.

Group communication is a form of multicast communication for a group
of processes where every process may send messages and each message should
reach all processes in the group. This type of communication is particularly
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useful in distributed applications where the processes cooperate to maintain
some shared state, for example, replicated shared objects. This has various types
of applications, examples thereof are services implemented by a set of replicas to
enhance reliability and/or availability and distributed cooperative applications,
such as virtual environments or games, where a set of geographically distributed
users want to interact through the shared state of the application.

Protocols for group communication are sometimes called broadcast protocols,
because if one only considers the processes inside the group, then each message
should reach all processes.

Broadcast protocols can have a variety of properties with respect to guar-
antees, resource demands and assumptions on the properties provided by the
underlying system, for example bounded message delays. It is common to distin-
guish the guarantees provided by a broadcast protocol into reliability, ordering
and timeliness guarantees. Reliability guarantees, which concern message de-
livery, can range from best effort to the strong guarantees of Reliable Broadcast
and Uniform Reliable Broadcast.

A Reliable Broadcast satisfies these three properties [HT93]:

• Validity. If a correct process broadcasts a message m, then all correct
processes eventually deliver m.

• Agreement. If a correct process delivers a message m, then all correct
processes eventually deliver m.

• Integrity. For any message m, every correct process delivers m at most
once, and only if some process broadcasts m.

Under the Reliable Broadcast properties a faulty process could do bad things,
like delivering a message twice or delivering a phony message that was never
broadcast. Uniform Reliable Broadcast avoids these problems by strengthening
the Agreement and Integrity properties to also include faulty processes:

• Uniform Agreement. If a process (correct or faulty) delivers a message
m, then all correct processes eventually deliver m.

• Uniform Integrity. For any message m, every process (correct or faulty)
delivers m at most once, and only if some process broadcast m.

The Reliable Broadcast properties do not specify in what order the processes
deliver the messages, so each process is free to deliver in any order. This is not
a desirable behaviour in some applications, e.g. distributed replication where
it would be much more convenient if all processes delivered the messages in
the same order. Consequently, a number of different message delivery order-
ing properties have been defined for broadcast protocols. The more common
are [HT93]:

• FIFO order. If a process broadcasts a message m before it broadcasts a
message m′, then no correct process delivers m′ unless it has previously
delivered m.
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• Causal order. If the broadcast of a message m causally precedes the
broadcast of a message m′, then no correct process delivers m′ unless it
has previously delivered m.

• Total order. If correct processes p and q both deliver messages m and
m′, then p delivers m before m′ if and only if q delivers m before m′.

The total order property ensures that all processes deliver the same set of
messages in the same order. Such broadcast protocols are also known as atomic
broadcasts. This property, in itself, does not guarantee that the protocol pro-
vides FIFO or causal order, but a broadcast protocol may provide a combination,
such as causal atomic broadcast.

In [BJ87] Birman et. al. presented a set of protocols for reliable broad-
cast called virtual synchrony, which formed the basis for the successful group
communication systems ISIS and Ensemble. In the latter system the protocols
are implemented as layers and the application can choose and assemble layers
into protocol stacks to achieve the desired properties, e.g. causal atomic broad-
cast. Protocols implementing reliable causal broadcast have been proposed in
e.g. [BSS91, RST91, KS98].

1.4.1 Gossiping

The strong reliability guarantees in the presence of faults of traditional reliable
broadcast protocols are not for free — they come at a considerable overhead in
terms of limited scalability and potential message delivery latency.

Recent approaches for information dissemination focus on large scale systems
with peer-to-peer (P2P) communication. These systems are usually considered
to have both a very large number of participants/processes and also an almost
continuous stream of processes joining and leaving the system. Both of these
factors make the use of traditional reliable broadcast in such systems problem-
atic. Instead, lightweight probabilistic group communication protocols, which
allow groups to scale to many processes by providing reliability expressed with
high probability, have been proposed for use in these systems.

One such lightweight information dissemination technique is gossiping, which
is based on inspiration from nature, namely, of how a rumour spreads among a
group of people or how a disease spreads in a susceptible population. Gossip-
ing uses a flat unstructured communication model where each process knows a
potentially dynamic subset of the group members, called its view.

Gossiping does not provide the strong guarantees of reliable broadcast (as
discussed above) but aim for predictable reliability which guarantees that a mes-
sage reaches all non-faulty processes with high probability, that is, with proba-
bility at least 1−O(n−c) for some constant c.

Gossiping as a distributed systems concept was introduced by Demers et al.
in [DGH+87], where it was used for data replication. Birman et al. in [BHO+99]
applied gossiping as the basis of the probabilistic broadcast protocols pbcast and
bimodal multicast. Since then many more gossip-based protocols have emerged,
such as lpbcast [EGH+01], SCAMP [GKM01] and [BEG04]. In [HKMP95]
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Hromkovic et al. surveys results from deterministic analysis of gossiping and
other broadcast algorithms in a set of different graph topologies.

1.4.2 Optimistic message ordering in group communica-
tion

As we have seen above, the reliability and ordering properties of traditional
reliable broadcast are very strong. This might have the drawback of slowing
down the whole system even if only a small subset of the processes is slow. In
particular, given the definition of causal order broadcast above, even a single lost
or late message prevents a process from delivering any of the causally succeeding
messages that it might receive until the missing message has been recovered. For
the sake of efficiency and/or resource constraints it may make sense for some
applications to skip a missing message rather than to let it delay or prevent the
delivery of newer messages as they arrive. Some example application domains
include distributed audio and/or video, distributed monitoring of systems where
newer operations overwrite the preceding one. This type of message ordering is
called optimistic causal order and is defined as follows:

• Optimistic causal order. If the broadcast of a message m causally
precedes the broadcast of a message m′, then a correct process delivers m
if it has not already delivered m′.

A protocol that provides optimistic causal order should preferably also pro-
vide predictable reliability, that is, that a message is delivered to all non-faulty
processes with high probability.

Protocols that provide optimistic causal order for broadcast messages have
been presented by Baldoni et al. in [BPRS98] and broadcast as well as point-
to-point messages by Rodrigues et al. in [RBAR00]. Their protocols assign
a real-time deadline to each message, which specifies how long a process will
wait for any missing causally preceding messages to show up before delivering
the current message anyway. To track the causal order among messages the
protocols attach dependency information to each message, for [BPRS98] the
worst-case size of this information is linear in the number of processes in the
group, while for [RBAR00] it is quadratic (due to the protocol’s support for
point-to-point messages).

In Chapter 3 we present a protocol that implements optimistic causal order
for broadcast messages and that reduces the dependency information in each
message to a constant size by means of an upper bound on the number of
processes that may send a broadcast message concurrently.
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1.5 Concurrent data access in shared memory
systems

In a shared memory system the processes1 have access to a set of shared memory
locations which they may use to communicate. A process can read data from
and write data to each shared memory location. The number of processes can
be much larger than the number processors due to multiprogramming, which
may interleave the execution of several processes on the same processor. The
processes are often considered to be asynchronous, that is, their rate of execution
might vary arbitrarily, because of the interleaving. This has certain implications
for the possibilities for the synchronization and coordination of processes which
we will discuss below.

1.5.1 Linearizability

We want the semantics of all operations on a shared data object to be the
same as for the same operation on the corresponding sequential object. The
consistency model that captures this is called linearizability and was introduced
by Herlihy and Wing in [HW90]. Linearizability requires that for each operation,
in a concurrent execution of operations on the shared data object, there is an
atomic time instant that lies within its duration where the operation takes
effect, in a way such that the outcome of the operation agrees with the object’s
sequential specification.

1.5.2 Lock-based synchronization

The traditional way to synchronize processes/threads accessing a shared data
object in a concurrent program is to use mutual exclusion. Mutual exclusion
is normally implemented using a lock, which is a shared variable together with
routines to atomically acquire and release the lock. The atomicity of acquire
and release guarantees that only one process can acquire and hold the lock at a
time. The most common approach when synchronizing using locks is to use the
lock to implement critical sections, that is, some pieces of code that can only be
run by one process at the time. For a shared data object, it is common that the
operations it supports are implemented as mutually exclusive critical sections.

The use of locks and the sequential nature of critical sections cause a number
of drawbacks, namely:

• Deadlock prone. With locks it is not hard to create circular lock depen-
dencies that cause two (or more processes) to get blocked by both trying
to acquire a lock that is held by the other. Furthermore, a process that
crashes while holding some lock(s) is also likely to block the progress of
other processes.

1We will use the term process and thread interchangeably in the context of general shared
memory synchronization. If we talk about threads and processes in the operating system sense
it will be made clear from context.
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• Blocking. The process that has acquired the lock will delay all other
processes that also need that lock until it has finished executing inside
the critical section. To make matters worse the process inside the critical
section may itself be delayed by being preempted by the scheduler, suffer
a page-fault, try to acquire another lock or wait for IO inside the critical
section.

• Priority inversion. This is a pathological case that can occur when using
a strict priority based scheduler, where a medium priority process can
delay a high priority process, potentially indefinitely on a single processor
system, by preempting a low priority process that has acquired a lock
needed by the high priority process. This problem can be avoided by
employing priority inheritance protocols as proposed by Sha et al. [SRL90].

1.5.3 Non-blocking synchronization

Non-blocking synchronization techniques avoid the use of locks by using cunning
algorithms, which often but not always use hardware synchronization primitives,
to create shared data objects that can be accessed simultaneously by several
processes. By avoiding locks non-blocking synchronization does not exhibit
the problems of deadlocks, blocking and priority inversion, which lock-based
synchronization suffers from. Non-blocking shared data objects also have a
higher degree of fault-tolerance than lock-based ones since they can tolerate
any number of processes experiencing stop-failures.

There are two kinds of non-blocking synchronization, lock-free synchroniza-
tion and the stronger wait-free synchronization.

Lock-free synchronization

A lock-free algorithm guarantees that regardless of the contention caused by
concurrent operations and the interleaving of their steps, at each point in time
there is at least one operation which is able to make progress. However, as there
is no fairness guarantee, some operation could be starved and take unbounded
time to finish.

The lack of fairness guarantee significantly simplifies the construction of
lock-free algorithms compared to wait-free ones and leads to algorithms that
are fast when there are no conflicts but cause slow down for all except one
process involved in a conflict. Hence, lock-free synchronization is also known as
optimistic synchronization [Rin99].

In [Her93] Herlihy described a general method for transforming any sequen-
tial data object implementation to a lock-free shared data object implementa-
tion. In short, the methodology is like this: The state of the shared data object
is represented by a pointer to the current version; an operation on the shared
data object first makes a new private copy of the current version, applies the
sequential version of the desired operation on the private copy and thus cre-
ates a new prospective state of the shared object. Then it tries to install this
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prospective state as the new version of the shared object using an atomic syn-
chronization primitive that will only succeed if the current version of the shared
object is still the same as the one the new state was computed from. If the
operation fails to install its new state, some other operation(s) have managed
to install their new versions and this operation has to retry from the beginning.

This general methodology is often not very efficient because (i) the entire
object is copied for each update (this can be optimized though) and (ii) the
resulting lock-free shared object is not disjoint-access parallel, that is, all con-
current operations on it cause conflicts even when the operations only access
disjoint parts of the shared object.

For the above reasons, a significant research effort is being spent on the task
of designing and developing efficient lock-free implementations of various data
structures.

The use of lock-free instead of lock-based synchronization can give signifi-
cant performance gains in parallel applications, as shown by Tsigas and Zhang
in [TZ01a, TZ02], as well as in operating systems, for example as suggested by
Greenwald and Cheriton in [GC96].

Wait-free synchronization

A wait-free algorithm is both lock-free and fair, it guarantees that every opera-
tion finishes in a bounded number of its own steps, regardless of the actions of
other operations. This is a very strong property, as it decouples the processes
using the same shared data object from each other. This makes wait-free shared
data objects attractive to use, for example, in hard real-time systems where the
worst-case execution time has to be known for every operation and where lock-
based critical sections limit the schedulability of the system and complicate the
schedulability analysis. A drawback, however, is that algorithms that are wait-
free, are often also quite complex, in particular for non-trivial shared objects.

A common approach in implementing wait-free algorithms is the use of help-
ing schemes [Her91]. In a helping scheme each operation first announces in-
formation about what it wants to do with the shared object in some global
data structure, then it checks in the announce-structure to see if there are other
operations that it needs to help before proceeding with its own.

Barnes presented a method similar to helping in [Bar93]. In his method
each operation on the shared data object is divided into a sequence of virtually
atomic suboperations, where each suboperation is constructed so that once it has
begun, it is guaranteed to be performed fully, either by the initiating process or
by being helped by another process.

In [Her91] Herlihy presented a universal method for constructing a wait-free
algorithm for any shared data object. However, as for the general methodology
for construction of lock-free algorithms, the universal construction for wait-free
algorithms is not practical in all cases and therefore significant research efforts
are being spent on developing efficient wait-free algorithms.
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1.5.4 Non-blocking data structures

There is a plethora of lock-free and wait-free shared data object implementations
in the literature. In this section we will briefly mention a few of them and some
of the issues the designers of non-blocking algorithms face.

Atomic Registers

A fundamental problem for concurrent shared memory systems that has re-
ceived a significant amount of research effort is the readers/writers problem. In
this problem a number of concurrent processes are interested in reading from
and/or writing to a shared data object also called a register. All read or write
operations should take effect atomically and they return or update the entire
state of the shared data object. For small shared data objects that fit in a sin-
gle memory word (of the word size supported by the multiprocessor system at
hand) the hardware read/write instructions and, if needed, the memory barrier
instructions described in Section 1.2.1 above provide the properties required. If,
on the other hand, the shared data object is larger than a single word (of the
word size supported by the multiprocessor system at hand) a software algorithm
is needed to solve the readers/writers problem.

The classical solution is to use mutual exclusion to enforce that either (i) no
read or write operations overlap each other; or (ii) no write operations overlap
each other or any read operation. These methods, normally implemented using
a mutual exclusion lock or a readers-writers lock, respectively, both suffer from
the drawbacks of mutual exclusion which are further discussed in Section 1.5.2.

In [Lam77] Lamport introduced a solution to the readers/writers problem
with one writer which did not use mutual exclusion. Lamport’s algorithm al-
lows the writer unimpeded access to the register regardless of what the readers
do, while the readers will never interfere which each other but can be forced to
retry if the writer interferes with them. This can force a slow reader to retry
indefinitely. Lamport’s algorithm marked the start of long running research ef-
forts to construct solutions to the readers/writers problem where neither readers
nor writer could be delayed indefinitely by interference from other readers or
writers.

This has made this problem, also known as the problem of multi-word wait-
free read/write registers, one of the well-studied problems in the area of non-
blocking synchronization, with numerous results for the construction of e.g.:
(i) single-writer single-reader registers [Lam86, Sim90, CB97];
(ii) single-writer n-reader registers [Pet83, BP87, KKV87, NW87, KR93, SAG94,
HV95, LGH+04];
(iii) 2-writer n-reader registers [Blo88]; and
(iv) m-writer n-reader registers [VA86, PB87, IS92, LV92, LTV96, HV96].

The main goal of most of the algorithms in these results is to construct
wait-free multi-word read/write registers from single-word read/write registers
and not from other synchronization primitives which may be provided by the
hardware in a system. This has been very significant, providing fundamental
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results in the area of wait-free synchronization, in particular considering the
nowadays well-known and well-studied hierarchy of shared data objects and
their synchronization power [Her91]. Many of these solutions also involve elegant
and symmetric ideas and have formed the basis for further results in the area
of non-blocking synchronization.

In Chapter 8 we present a simple, efficient wait-free algorithm for implement-
ing multi-word n-reader/single writer registers of arbitrary word length utilizing
synchronization primitives available on current multiprocessor systems.

Other non-blocking data structures

The FIFO queue is one of the fundamental data structures for which several
researchers have proposed lock-free implementations, for example Valois [Val94],
Michael and Scott [MS96], Michael [Mic02b] and Tsigas and Zhang [TZ01b].

The singly linked list is another data structure for which lock-free imple-
mentations have been proposed by Valois [Val95b] and Harris [Har01] among
others. A lock-free implementation of doubly linked lists using single-word
Compare And Swap has recently been proposed by Sundell and Tsigas [ST04,
Sun04a]. The earlier implementations, for example Greenwald [Gre99] used
double-word Compare And Swap.

There are a number of lock-free implementations of deques (that is, double-
ended queues), two recent ones by Sundell and Tsigas [ST04] and Michael [Mic03]
that use only single-word Compare And Swap, and a number of earlier implemen-
tations using double-word Compare And Swap, for example Greenwald [Gre99],
Agesen et al. [ADF+02] and Martin et al. [MMS02].

There are at least two implementations of lock-free priority queues, one by
Sundell and Tsigas [ST03] and one by Israeli and Rappoport [IR93]. The latter
is actually wait-free but requires the multi-word Compare And Swap synchro-
nization primitive, which is not available in hardware on current processors and
therefore has to be implemented in software which leads to significant overhead.

The software library NOBLE by Sundell and Tsigas [ST02] is a much wel-
come initiative as it makes a collection of implementations of lock-free algo-
rithms easily accessible and usable for application programmers, something that
was missing before.

There are a number of issues that complicate the implementation of non-
blocking algorithms. We will discuss two of these below, namely management
of dynamic memory and composition of non-blocking data structures.

Management of dynamic memory

Due to the concurrent nature of non-blocking algorithms the management and
reclamation of dynamically allocated memory become difficult. In particular,
after a thread has read a pointer to a dynamically allocated node from a shared
variable the thread might be delayed for an arbitrary amount of time before it
actually dereferences the pointer and accesses the node. This implies that some
form of delayed memory reclamation or garbage collection scheme is necessary,
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since, if some other thread decides to delete the node in question, the node must
not be reused until it is certain that no thread still have any local pointer to the
node. Several such memory reclamation schemes have been proposed and will
be discussed further in Section 1.5.5.

While the above schemes make it possible to handle dynamically allocated
memory and to know when such memory can be freed safely, a non-blocking
memory allocator is also needed to have a completely non-blocking memory
management system. Memory allocators, including lock-free ones, will be dis-
cussed further in Section 1.6.2.

Composition of non-blocking data structures

Composition of non-blocking shared data objects is tricky since the operations
on the combined object do not trivially have the desired linearizability prop-
erties. Consider for example some shared container object that internally has
objects stored in different non-blocking subcontainers. In this case it is, for ex-
ample, not obvious if it is possible to implement a lock-free membership test. If
we naively move a stored object from one subcontainer to another by removing
it from the first and then inserting it into the other there is a time interval when
that object is only known to the process performing the move and therefore not
a visible member of the container during that time.

1.5.5 Dynamic memory in non-blocking data structures

To manage dynamically allocated memory in non-blocking algorithms is difficult
due to overlapping operations that might read, change or dereference (i.e. fol-
low) references to dynamically allocated blocks of memory concurrently. One of
the most problematic cases is when a slow process dereferences a pointer value
that it previously read from a shared variable. This dereference of the pointer
value could occur an arbitrarily long time after the shared pointer holding that
value was overwritten and the memory designated by the pointer removed from
the shared data structure. Consequently it is impossible to safely free or reuse
the block of memory designated by this pointer value until we are sure that
there are no such slow processes with pointers to that block.

This implies that some form of garbage reclamation scheme is necessary.
There are several such schemes in literature with a wide and varying range of
properties. Here we will use a subset of these properties to classify and present
an overview of some of the memory reclamation schemes. The properties are:

I Safety of local references.
For local references, which are stored in private variables accessible only
by one thread, to be safe the memory reclamation scheme must guarantee
that a dynamically allocated node is never reclaimed while there still are
local references pointing to it (cf. Figure 1.5). This is a fundamental
property that all memory reclamation schemes discussed here have.
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II Safety of shared references.
Additionally, a memory reclamation scheme could also guarantee that it
is always safe for a thread to dereference any shared references located
within a dynamic node the thread has a local reference to. Property I
alone does not guarantee this, since for a node that has been deleted but
cannot be reclaimed yet any shared references within it could reference
nodes that have been deleted and reclaimed since the node was removed
from the data structure, as is described in Figure 1.6.

III Automatic or explicit deletion.
A dynamically allocated node could either be reclaimed automatically
when it is no longer accessible through any local or shared reference, that
is, the scheme provides automatic garbage collection, or the user algorithm
or data structure could be required to explicitly tell the memory recla-
mation scheme when a node is removed from the active data structure
and should be reclaimed as soon as it has become safe. While automatic
garbage collection is convenient for the user, explicit deletion by the user
gives the reclamation scheme more information to work with. This could
enhance the efficiency and/or enable the reclamation scheme to provide
stronger guarantees, e.g. bounds on the amount of deleted but yet unre-
claimed memory.

IV Requirements on the underlying memory allocator.
Some memory reclamation schemes require special properties from the
underlying memory allocator, like, for example, that each allocatable node
has a permanent (i.e. for the rest of the system’s lifetime) reference counter
associated with it. Other schemes are compatible with the well-known and
simple allocate/free allocator interface where the node has ceased to exist
after the call to free.

V Required synchronization primitives.
Some memory reclamation schemes are defined using synchronization prim-
itives that few if any current processor architectures provide in hard-
ware, such as for example double word Compare And Swap, which then
have to be implemented in software often adding considerable overhead.
Other schemes make do with single word Compare And Swap, single word
Load Linked/Store Conditional or even just reads and writes alone.

The properties of the memory reclamation schemes discussed here are summa-
rized in Table 1.1. One of the most important properties is Property II, that is
whether the memory reclamation scheme guarantees that references contained
within a referenced node can be dereferenced. Many lock-free algorithms and
data structures need this property. Among the memory reclamation schemes
that guarantee Property II we have the following schemes which are all based
on reference counting: Valois et al. [Val95a, MS95], Detlefs et al. [DMMS01],
Herlihy et al. [HLMM02] and Gidenstam et al. [GPST05] (also presented in
Chapter 5) and the potentially blocking epoch-based scheme by Fraser [Fra04]
(see also [Har05]).
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Figure 1.5: Example of Property I for reclamation of dynamic memory in non-
blocking algorithms. Thread 1 and Thread 2 both have a local reference to the
node A (created by reading L). Thread 1 changes the shared reference L to
point to the node B, thereby deleting A from the shared structure. However,
past that point Thread 2 might still access A through its local reference.

On the other hand, for data structures that do not need Property II, like
for example stacks, the use of a reclamation scheme that does not provide this
property has significant potential to offer reduced overhead compared to the
stronger schemes. Among these memory reclamation schemes we have the non-
blocking ones by Michael [Mic02b, Mic04c] and Herlihy et al. [HLM02].

1.6 System services and synchronization

Computer programs as we know them in current computer systems are usually
run in a process environment provided by the operating system. Most current
operating systems support multiple threads of control in each process, which
consequently can be viewed as a virtual shared memory multiprocessor. Non-
blocking shared data objects, such as the previously mentioned ones, are usually
employed at the user-level by concurrent applications to provide synchronization
between threads without involving the operating system kernel.

While it is possible to employ non-blocking method throughout an operating
system kernel, as done, for example, by Massalin in [Mas92], this is, to my
knowledge, not done in any commonly used operating system at this time.
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Figure 1.6: Example of Property II for reclamation of dynamic memory in non-
blocking algorithms. Thread 1 and Thread 2 both have a local reference to
the node C. Thread 1 removes the nodes C and D from the active structure.
Thread 2, having a local reference to node C, might still dereference C.next to
access node D, e.g. to continue traversing the linked structure.
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Property II Property III Property IV Property V

Michael No Explicit Yes Yes
[Mic02b, Mic04c]

Herlihy et al. No Explicit Yes No
[HLM02]

Valois et al. Yes Automatic No Yes
[Val95a, MS95]

Detlefs et al. Yes Automatic Yes No
[DMMS01]

Herlihy et al. Yes Automatic Yes No
[HLMM02]

Gidenstam et al. Yes Explicit Yes Yes
[GPST05]

Fraser Yes Explicit Yes Yes
[Fra04]

Table 1.1: Properties of different approaches to non-blocking memory reclama-
tion.

However, some system services might also benefit from non-blocking methods
or could be adapted to simplify the implementation of such methods at the
user-level. A major candidate among the system services for application of
non-blocking methods is the memory management, which is, to a large extent,
handled at the user-level within the process and usually only involves the kernel
when additional pages have to be added to the heap area.

1.6.1 Information dissemination and consistency services

In distributed systems, applications often have communication and synchroniza-
tion needs that are not satisfied by the operating systems on the participating
computers alone. In such cases the required services could be implemented as
part of the application itself or as middleware, that is, additional independent
software components running on top of the operating systems.

In some distributed applications, such as collaborative virtual environments
(CVEs) where remotely located participants interact in a shared virtual world
and other distributed collaborative applications, there are (i) timing constraints,
since the participants interact in real time, (ii) consistency requirements, since
the participants need some degree of consistency in their views of the shared
state to cooperate efficiently and (iii) scalability requirements since they might
need to support a large number of participants. For these applications suitable
middleware components could provide group communication protocols for infor-
mation dissemination, consistency management and consistency tracking, such
as logical clocks, and protocols for distributed resource management.
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1.6.2 Memory allocation

Almost all computer systems have some form of general purpose memory man-
agement and the properties and design of memory allocators for this pur-
pose have been researched for many years (see Wilson et al. [WJNB95] for an
overview). However, memory management on a shared memory multiprocessor
and/or in combination with non-blocking algorithms raises additional issues,
among which the synchronization is an important one [Ber02].

On conventional general purpose memory allocators the application can re-
quest (allocate) arbitrarily-sized blocks of memory and free them in any order.
Essentially the memory allocator is an online algorithm that manages some
pool of memory (heap), for example a contiguous range of addresses or a set
of such ranges, keeping track of which parts of that memory that is currently
given to the application and which parts that are unused and can be used to
meet future allocation requests from the application. The memory allocator is
not allowed to move or otherwise disturb pieces of memory that are currently
owned/allocated by the application. This, together with the fact that the re-
quest (allocation and deallocation) sequence is arbitrary, make it impossible to
construct a memory allocator algorithm that always ensures efficient memory
usage — it will always be possible for some application to produce a request
sequence that causes severe fragmentation [Rob71, WJNB95].

Fortunately, most applications are well behaved in some sense with respect to
memory allocation behaviour and exhibit regularities in their request sequences
that a good memory allocator can exploit to reduce fragmentation.

Concurrent Memory Allocators

Multi-threaded programs add a number of extra complications to the memory
allocator. Obviously some kind of synchronization has to be added to protect
the heap during concurrent requests. There are also other issues, which may
have significant impact on application performance when the application is run
on a shared memory multiprocessor [Ber02].

The first of these is false sharing which is when different parts of the same
cache-line end up being used by threads running on different processors. This
will put a potentially large and completely unnecessary load on the cache-
coherence mechanism. This can never be avoided completely since application
threads may pass allocated memory between themselves but a memory allocator
can avoid to actively induce false sharing by making sure not to satisfy requests
from different processors with memory from the same cache-line.

The second issue is heap blowup which is an (potentially unbounded) over-
consumption of memory (compared to what the application actually requires)
that may occur if the memory allocator fails to make memory freed by one pro-
cessor available for allocation by other processors (for example as the result of a
coarse policy for avoiding false sharing). A typical application that might trig-
ger this behaviour is an application that has producer and consumer threads,
where the producer allocates memory and passes it to the consumer which in
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turn frees the memory. If the memory freed by the consumers is never made
available to the producers then the resulting heap blowup can be unbounded.

The last issues are scalability and speed. For a memory allocator to be
scalable, its performance has to scale linearly with the number of processors
in the system. In terms of speed, the concurrent memory allocator should be
about as fast as a good sequential one in order to ensure good performance even
when a multi-threaded program is executed on a single processor.

A brief overview of some concurrent memory allocator designs:

• Single serial heap. A normal sequential memory allocator protected
by a global lock. This type of memory allocator will scale poorly on
multiprocessors, since only one thread can access the heap at a time, and
it may in fact in some instances also perform bad on a single processor
since a thread holding the heap lock might easily be delayed inside the
memory allocator code (for example by a page fault). It is also prone to
induce false sharing, but does not suffer from heap blowup and should
be fast on a single processor in most cases (but note the lock problem
mentioned above). Examples include the standard memory allocators on
Solaris and Windows 2000.

• Concurrent single heap. A memory allocator with a single heap with
fine-grained synchronization so that several threads may operate on it
concurrently. This kind of memory allocator avoids heap blowup and
might be scalable but is prone to induce false sharing and it is not easy
to make it fast due to the synchronization overhead.

• Pure private heaps. The memory allocator maintains a separate heap
for each processor, where threads running on that processor allocate mem-
ory. When a thread frees some memory it is added to the heap of the
processor running that thread. This causes pure private heaps to suffer
from potentially unbounded heap blowup. On the other hand this type of
memory allocator is scalable, fast and is less prone to induce false shar-
ing (if designed correctly). Examples include the STL allocator and the
allocator in Cilk.

• Private heaps with ownership. These memory allocators are similar to
pure private heaps but freed memory is always returned to the heap it was
allocated from. This bounds the worst case heap blowup to O(P ), where
P is the number of processors. Examples include MTmalloc (Solaris) and
Ptmalloc (glibc).

• Private heaps with thresholds. To avoid the O(P ) heap blowup that
private heaps with ownership suffer from, private heaps with thresholds
use a global heap in addition to the per-processor heaps. When there is
too much free memory in a per-processor heap some of it is transfered to
the global heap from where it can be transfered to another per-processor
heap and reused. Examples include Hoard [BMBW00], LFmalloc [DG02],



1.6. SYSTEM SERVICES AND SYNCHRONIZATION 29

the memory allocator in [Mic04c] and the memory allocator presented in
Chapter 6 of this thesis.

On multiprocessor systems the Hoard memory allocator by Berger et al.
[BMBW00] is currently one of the fastest and most scalable memory allocators.
There is significant interest in developing lock-free memory allocators based on
the Hoard architecture, examples are Michael’s allocator [Mic04c], NBmalloc
presented in Chapter 6 of this thesis and the almost lock-free allocator by Dice
et al. [DG02]. The main reasons for this interest are i) to have a general purpose
memory allocator that can be used by lock-free algorithms without destroying
the lock-freedom; and ii) improve the scalability even further, in particular in
cases when there are more threads than processors.

1.6.3 Scheduling

Processor scheduling of processes and threads is one of the fundamental tasks
of a multiprogrammed operating system and how it is performed also influences
how synchronization among threads and processes behaves. There are three
basic approaches on how to handle the scheduling of processes and the scheduling
of threads, which are separate execution flows/threads of control within one
process, that is, share the same address space, file table and other process
related resources. These approaches are (these brief descriptions are based on
Tanenbaum [Tan01]):

• User-level threads. In this approach the threads are managed and
scheduled entirely at the user-level and operating system kernel is com-
pletely unaware of them. The main benefit of this approach is a low
overhead for managing the thread but there are several drawbacks: (i)
it is difficult to handle blocking system calls; (ii) threads from the same
process cannot utilize multiple processors and (iii) a page-fault will block
all threads in a process.

• Kernel-level threads. In this approach the threads are scheduled and
managed by the operating system kernel much in the same way as pro-
cesses are. One benefit with this approach is that blocking system calls
and page-faults only affect the involved thread and not the other threads
of the process. Furthermore, it allows threads of the same process to run
with full concurrency on a multiprocessor. The drawbacks are the in-
creased overhead as all thread management and context switches between
threads now have to be done by the kernel.

• Hybrid methods. These approaches try to combine the good proper-
ties of both the above approaches by implementing two levels of threads:
kernel threads which are scheduled and managed by the kernel and user-
level threads which are managed at the user-level and multiplexed onto
kernel threads in a similar way as in the first approach. This should allow
both thread management with low overhead, good concurrency on mul-
tiple processors and reasonable behaviour for blocking system calls. One
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of the main drawbacks is the increased complexity of the implementation
when thread management is present both in the kernel and at the user-
level. One interesting implementation of the hybrid approach is scheduler
activations proposed by Anderson et al. [ABLL92].

Non-blocking synchronization in combination with process and thread schedul-
ing are interesting in two different ways. The first is to make the scheduling
process itself faster and more scalable by making it non-blocking, the other is
to make synchronization at the user-level easier and more efficient by utilizing
a scheduler with special properties or making the scheduler aware of ongoing
user-level synchronization.

The first case is more easily adaptable for user-level or hybrid thread imple-
mentations as its use for kernel level threads require modifications in the kernel.
An example is the work-stealing scheduler by Blumhofe et al. in [BL94].

Examples of the second case are work on non-blocking synchronization in
systems with quantum scheduling by Anderson et al. [AJO98] and [AM99];
the implementation of non-blocking critical sections by having the scheduler
release the lock on preemption by Bershad [Ber93]; and a method to turn lock-
free synchronization into wait-free in single processor hard real-time systems by
Anderson et al. [ARJ97].

1.6.4 High-level synchronization objects

It is common for operating systems or thread libraries to provide a set of syn-
chronization objects, like for example semaphores, condition variables and mu-
texes, which can be used by the applications for synchronization purposes. Most
such synchronization objects have blocking semantics, that is, a thread that has
to wait will be put in a waiting queue and yields the processor. The imple-
mentation of the synchronization objects themselves on the other hand could
benefit from being non-blocking, in particular when running many threads on a
multiprocessor system with few processors — a situation where the traditional
implementations based on spin-locks is likely to perform less well.

1.7 Contributions of the thesis

This thesis makes contributions to distributed system services for managing
causality and concurrency by introducing scalable logical clock algorithms for
tracking causality in the system and scalable and lightweight algorithms for
middleware providing optimistic causal order group communication and resource
management. Further, it makes contributions to the area of optimistic and
non-blocking synchronization for increased scalability in key system services for
shared memory systems by proposing and evaluating algorithms for lock-free
memory allocation, lock-free memory reclamation, lock-free thread scheduling
and synchronization and atomic multi-word registers.
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1.7.1 System services for managing causality and concur-
rency

Adaptive Plausible Clocks

In the area of synchronization in message passing systems this thesis presents
results on plausible logical clocks for use in large systems that demand both low
overhead in terms of message size and good accuracy in determining causal rela-
tions between events. We have introduced the Non-Uniformly Mapped R-Entries
Vector Clocks (NUREV), a general class of vector-based plausible clocks that
extends and includes the R-Entries Vector (REV) clocks algorithm of [TRA99]
and the full Vector clocks [Mat89, Fid88, Fid91]. The NUREV class forms a
framework for implementing new plausible clock algorithms that may adaptively
change their mapping between processes and clock entries in order to improve
accuracy and scalability. Further, we analyze the behaviour of NUREV clocks
to determine when, where and why they might order causally unrelated events.
Based on this analysis we propose two new adaptive NUREV plausible clock
algorithms that show very competitive accuracy, in particular for small times-
tamp sizes. Our work on logical clocks and new scalable methods to achieve
optimistic forms of consistency for, e.g., peer-to-peer applications is presented
in Chapter 2.

Lightweight Causal Cluster Consistency

Within an effort for providing a layered architecture of services supporting multi-
peer collaborative applications, we propose a new type of consistency manage-
ment aimed for applications where a large number of processes share a large set
of replicated objects. Many such applications, like peer-to-peer collaborative
environments for training or entertaining purposes, platforms for distributed
monitoring and tuning of networks, rely on a fast propagation of updates on
objects, however they also require a notion of consistent state update. To cope
with these requirements and also ensure scalability, we propose the cluster con-
sistency model. We also propose a two-layered architecture for providing cluster
consistency. This is a general architecture that can be applied on top of the stan-
dard Internet communication layers and offers a modular, layered set of services
to the applications that need them. Further, we present a fault-tolerant protocol
implementing causal cluster consistency with predictable reliability, running on
top of decentralized probabilistic algorithms supporting group communication
and we analyze its reliability and fault-tolerance properties. Our experimental
study, conducted by implementing and evaluating the two-layered architecture
on top of standard Internet transport services, shows that the approach scales
well, imposes an even load on the system, and provides high-probability relia-
bility guarantees. Our work on providing group communication with optimistic
causal order consistency is presented in Chapter 3.
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Dynamic and Fault-tolerant Cluster Management

Recent decentralized event-based systems have focused on providing event de-
livery which scales with increasing number of processes. While the main focus
of research has been on ensuring that processes maintain only a small amount
of information for membership and routing, an important factor in achieving
scalability for event-based peer-to-peer dissemination system is the number of
events disseminated at the same time. This thesis presents a dynamic and fault-
tolerant cluster management method which can be used to coordinate concur-
rent access to resources in a peer-to-peer system. In the context of event-based
dissemination systems the cluster management can be used to control the num-
ber of concurrently disseminated events. We present and analyze an algorithm
implementing the proposed cluster management model in a fault-tolerant and
decentralized way. The algorithm provides for each cluster a limited set of tick-
ets. A process which has obtained a ticket may send events corresponding to the
resources of the cluster. The algorithm guarantees that no two processes ever
issue an event corresponding to the same ticket at the same time. The cluster
management model on its own has interesting properties which can be useful
for peer-to-peer applications. Our work on synchronization and resource man-
agement for managing clusters as needed for the cluster consistency (Chapter 3)
and more peer-to-peer applications is presented in Chapter 4.

1.7.2 Optimistic synchronization in shared memory sys-
tem services

Lock-free Memory Reclamation

For lock-free shared memory data structures using dynamic memory this the-
sis presents an efficient and practical lock-free implementation of a memory
reclamation scheme based on reference counting. The memory reclamation al-
gorithm is aimed for use with arbitrary lock-free dynamic data structures. The
algorithm guarantees the safety of local as well as global references, supports
arbitrary memory reuse, uses atomic primitives which are available in modern
computer systems and provides an upper bound on the amount of dynamically
allocated memory prevented for reuse. To the best of our knowledge, this is
the first lock-free algorithm that provides all of these properties. Experimental
results indicate significant performance improvements for lock-free algorithms
of dynamic data structures that require strong garbage collection support. Our
work on lock-free memory reclamation is presented in Chapter 5.

Lock-free Memory Allocator

For shared memory systems this thesis presents results on synchronization in one
of the fundamental system services in multiprocessor systems, namely memory
allocation. In particular, it presents NBmalloc, a scalable lock-free mem-
ory allocator for use in concurrent applications. Its architecture is inspired by
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Hoard [BMBW00], which is a successful system for concurrent memory alloca-
tors, based on a modular, scalable design that in itself offers good scalability
and helps circumvent significant obstacles present in shared-memory multipro-
cessor environments such as false sharing and heap blowup. Our allocator is
lock-free to improve scalability even further, in particular in highly concurrent
applications that use more threads than the number of available processors.
Within our effort on designing appropriate lock-free algorithms for the synchro-
nization in this system, we propose and give a non-blocking implementation of
a new data structure called flat-set, which supports conventional “intra-object”
operations (to insert and find elements) as well as “inter-object” operations, for
moving an element from one flat-set to another. Our work on lock-free memory
management is presented in Chapter 6.

Lock-free Thread Library

For system services in shared memory systems this thesis presents LFthreads,
a thread library whose synchronization is entirely based on lock-free techniques,
which means that no spin-locks or similar synchronization mechanisms are em-
ployed in the implementation of the multithreading. This implies that pro-
cessors are always able to do useful work and is achieved by a new synchro-
nization algorithm, hand-off, that does not need any special kernel support.
Since lock-freedom is highly desirable in multiprocessors due to its advantages
in performance, fault-tolerance, convoy- and deadlock-avoidance, there is an in-
creased demand in lock-free methods in multiprocessor applications, hence also
in multiprocessor system services. This is why the existence of a lock-free multi-
threading library is important. To the best of our knowledge LFthreads is the
first thread library that provides a lock-free blocking synchronization primitive
for application threads. Our work on the LFthreads library, including the
hand-off synchronization algorithm is presented in Chapter 7.

Multiword Atomic Register

Modern multiprocessor systems offer advanced synchronization primitives, built
in hardware, to support the development of efficient parallel algorithms. In this
thesis we develop a simple and efficient algorithm for atomic registers (variables)
of arbitrary length. The simplicity and better complexity of the algorithm is
achieved via the utilization of two such common synchronization primitives.
We also evaluate the performance of our algorithm and the performance of a
practical previously know algorithm that is based only on read and write prim-
itives. The evaluation is performed on three well-known parallel architectures.
This evaluation clearly shows that both algorithms are practical and that as the
size of the register increases our algorithm performs better, accordingly to its
complexity behavior. Our work on atomic registers of arbitrary size for shared
memory systems is presented in Chapter 8.
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Chapter 2

Adaptive Plausible Clocks1

Anders Gidenstam Marina Papatriantafilou

Abstract

Having small-sized logical clocks with high causal-ordering accuracy is useful, es-

pecially where (i) the precision of the knowledge of the causal dependencies among

events implies savings in time overhead and (ii) the cost of transmitting Full Vector

clock timestamps —that precisely characterize the causal relation— is high. Plausible

clocks can be used as timestamps to order events in a distributed system in a way that

is consistent with the causal order as long as the events are causally dependent. In

this work we study the accuracy of plausible clocks, which is measured by the number

of causally independent event pairs that they relate. We introduce the Non-Uniformly

Mapped R-Entries Vector (NUREV) clocks, a general class of plausible clocks, which

allow the use of clock vectors with a small number of entries and which also allow each

process in the system to use a different mapping between process-ids and clock-entry

indices, the idea being that dynamic mappings allow self-tuning and adaptation to im-

prove the accuracy of the clocks. Furthermore, we analyze the ways that these clocks

may relate causally independent event pairs. Our analysis resulted in a set of conclu-

sions and the formulation of new, adaptive plausible clocks algorithms, with improved

accuracy, even when the number of clock entries is very small, which is important in

peer-to-peer communication systems.

Keywords: Timestamping systems, logical clocks, plausible clocks, event ordering,

consistency.

1This is an extended version of the paper that appeared in the Proceedings of ICDCS 2004,
Tokyo, Japan, 24-26 March, 2004.

35



36 CHAPTER 2. ADAPTIVE PLAUSIBLE CLOCKS

2.1 Introduction

To observe consistent states in a distributed execution, it is desirable to be able
to establish some order among processes’ local states or among events of the ex-
ecution. Certain consistency requirements demand the ability to produce total
orderings. Examples include sequentially consistent distributed shared mem-
ory, distributed FIFO queues, among others. Where total orderings are not a
must, as for several modern peer-to-peer applications [SJZ+98, Mau00], relaxed
consistency guarantees such as causal consistency can imply higher flexibility
and lower overhead [AHJ91, TRA99, FJC00]. This is also the case in several
protocols for optimistic replication [SS05], where performance may be improved
by a good ability to distinguishing whether pairs of events have a cause and
effect relation or not.

To be able to determine the causal relation between events (i.e. whether they
have a cause-effect relation or are independent) we can timestamp the events
using some clock value. For asynchronous systems without physical clocks, logi-
cal clocks can be used for timestamping events, in a way so that event orderings
based on incremental timestamp values are consistent with causal precedence.
Vector clock timestamps [Mat89, Fid91, Sch88] can capture the exact causal
relation at the cost of O(N) clock entries per timestamp for a system of N
processes. Since any logical clock that can determine the exact causal rela-
tion between events in the system directly from the timestamps requires that a
timestamp of size O(N) is included in every message [CB91], it is important to
investigate the accuracy of logical clocks that approximate the causal relation
and use timestamps with fixed, small size, thus enhancing the scalability of the
system.

Having logical clocks with high causal-ordering accuracy is useful where the
precision of the knowledge of the causal relation among events implies savings in
time overhead, e.g. in resource allocation and consistency maintenance [TRA99].
This becomes all the more important in larger systems, where the cost of trans-
mitting Full Vector clock timestamps is high.

Related Work

Torres-Rojas and Ahamad in [TRA99] formalized the notion of plausible clocks.
A plausible clock can always determine the order of causally related events cor-
rectly but may order events which are actually concurrent. Lamport’s logical
clocks [Lam78] are examples of plausible clocks. The inaccuracy of a plausible
clock algorithm is measured by the number of ordering errors it makes in an
execution, i.e. the number of causally independent event pairs that it relates.
In [TRA99] a couple of plausible clock algorithms were introduced, namely the
R-Entries Vector (REV) clocks and the k-Lamport clocks. A method for com-
bining plausible clocks was also introduced: the combined clock is also plausible
and has at least the same or potentially improved accuracy, at the cost of having
size equal to the sum of the sizes of its components. The experimental evalua-
tion of the algorithms in [TRA99] has shown that they have improved accuracy
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compared to Lamport clocks, with the REV clock showing consistently better
behaviour. As pointed out in the same paper, the accuracy of a plausible clock
may depend on a number of factors, such as the size of the system and the
execution, the communication patterns among the processes and possibly more.
The analysis and evaluation of these dependencies, as well as their implications
in the design of plausible clock algorithms were left as issues for future research.

The issue of reducing the size of Vector Clocks as has received considerable
interest in literature.

In [PS97] Prakash and Singhal introduced methods for more space efficient
alternatives to Vector Clocks in a two level system model where mobile nodes
always communicate via base stations.

Building on that work Khotimsky and Zhuklinets in [KZ99] introduced a
plausible clock algorithm, Hierarchical Vector Clocks, which also targets hier-
archical networks, but which allows the hierarchy to have any number of levels.

In [MS05] Moore and Sivilotti introduced an algorithm for plausible clocks
with bounded inaccuracy. In their algorithm the user specifies an upper bound
on the acceptable precision loss for any timestamp. The size of each timestamp
is then chosen such that the precision bound is not violated.

In some systems it is enough to track only a subset of all events, the relevant
events. For such systems that also have access to shared memory Agarwal and
Garg in [AG06] introduced a class of logical clocks, called Chain Clocks, and
two algorithms in this class: the Dynamic Chain Clock and the Antichain-based
Chain Clock.

There is another trade-off that can be made to gain fixed-size timestamps,
namely time and functionality : in [BM03] Baldoni and Melideo introduced a
timestamping system that characterizes causality and has fixed-size timestamps.
However, in this algorithm only a dedicated checker process, which needs to be
notified about all events in the system, can determine the causal relation between
events —and sometimes it has to delay its decision until related notifications
have arrived.

The results of our work make significant steps in the investigation of these
issues. More specifically, we extend the notion of reduced size vector clocks to
include clocks where each process chooses its own mapping between process-
ID’s and clock entries and furthermore we allow these mappings to change dy-
namically during the lifetime of the system. We call this class of clocks (which
includes the aforementioned R-Entries Vector clock and the Full Vector clock al-
gorithms) Non-Uniformly Mapped R-Entries Vector (NUREV) clocks and show
that all NUREV clocks are plausible. The idea behind NUREV clocks is that
dynamic mappings allow self-tuning and adaptation of the clocks in order to
improve their accuracy. We analyze the ways that plausible clocks may relate
causally independent event pairs and show that it is both the communication
patterns, as well as the actual clock values — in particular the value-differences
among related entries — that influence the accuracy of the clock. These conclu-
sions implied a set of criteria on which to base decisions, which, in turn, resulted
in new adaptive mapping strategies, MinDiff and ROV-MRS that offer high
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causal-ordering accuracy.
The experimental evaluation of the performance of our proposed methods

agrees well with the conclusions of the analysis part and also shows promising re-
sults from the applicability point of view, namely that adaptive plausible clocks
with very small number of entries can give very good event-ordering accuracy.
In our evaluation we include both peer-to-peer communication systems, which
are the main target applications for such algorithms, as well as client-server
communication systems.

After describing our system model, we present our results, in the aforemen-
tioned order. We conclude by a discussion of the results and future research
issues in this direction.

2.2 Model and definitions

We follow the standard model used in the related literature. For most of the
notational conventions, we adopted the notation used in [TRA99].

The system consists of N sequential processes which are identified by distinct
identity numbers, denoted by p1, . . . , pN . The processes communicate with each
other by messages. The communication is point-to-point and fault-free. There
is no physical clock accessible to processes. We make no assumptions about the
relative speeds of the processes or the communication channels. Each system
execution is a set H of events. An event can be the sending of a message, the
reception of a message or a local step by some process. In each system execution,
each process pi executes a sequence of events, which is called its local history
for that execution and is denoted by Hi = e1

i , e
2
i , e

3
i , . . ..

The happened-before a.k.a. causal precedence relation → on the set H of
all the events of a system execution has been defined by Lamport [Lam78]: an
event a is said to precede an event b, denoted as a→ b, iff:

(i) for some i, a = ek
i , b = el

i and k < l (i.e. pi executed a before b); or
(ii) a is the sending of a message by some pi and b is the receipt of the same

message by some pj ; or
(iii) there exists an event c ∈ H, s.t. a→ c and c→ b.

If a does not precede b and b does not precede a then they are concurrent .
Plausible Time-Stamping Systems are mechanisms for timing events so that
event orderings based on incremental clock values are consistent with causal
precedence. Following are the formal definitions paraphrased from [TRA99]:

For a global history H of a distributed system, a Time-Stamping System
(TSS ) P is a pair

(
〈S,

P→〉, P.stamp
)
, where:

• S is a set of timestamp values (whose details are left open by this defini-
tion);

• P→ is an irreflexive and transitive relation defined on the elements of S
such that 〈S,

P→〉 is a strict partial order;
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• P.stamp is the timestamping function that maps H to S. We write
P.stamp(a), or shorter P (a), to represent the timestamp of a.

For u, v ∈ S define:

(i) v
P= u iff v = u; and

(ii) v
P

‖ u iff ¬(v P= u) ∧ ¬(v P→ u) ∧ ¬(u P→ v).
Further, we write:

• a
P= b iff P (a) P= P (b), i.e. when P believes that a, b are the same event;

• a
P→ b iff P (a) P→ P (b), i.e. when P believes that a precedes b; and

• a
P

‖ b iff P (a)
P

‖ P (b), i.e. when P believes that a and b are concurrent.
A time-stamping system P is plausible if ∀a, b ∈ H:

(i) a = b iff a
P= b; and

(ii) if a→ b then a
P→ b.

The second condition is also known as the weak clock condition.
A time-stamping system characterizes causality if ∀a, b ∈ H:

(i) a = b iff a
P= b;

(ii) a→ b iff a
P→ b; and

(iii) a‖b iff a
P

‖ b.
This set of requirements is also known as the strong clock condition.

A reader familiar with the related literature, has probably observed at this
point that Lamport’s logical clocks [Lam78] are plausible, while vector clocks (cf.
Fidge [Fid91] and Mattern [Mat89]) characterize causality –but, as mentioned
also elsewhere in this paper, at the cost of O(N) vector entries, which has been
shown to be necessary for any logical clock that characterizes causality [CB91].

To measure the amount of inaccuracy of a plausible time-stamping system
we use the proportion of all pairs of concurrent events in a history that are
believed to be causally related by the time-stamping system; i.e.:

error(P,H) =
|(a, b) ∈ H ×H : (a‖b) ∧ (a P→ b)|

|(a, b) ∈ H ×H : a‖b| .

Note that [TRA99] uses the ratio against all event pairs. We claim that the
ratio against the number of concurrent event pairs is a more precise measure
since a plausible clock never orders ordered event pairs wrongly.

2.3 Non-uniformly mapped vector clocks

The R-Entries Vector Clock (REV) introduced in [TRA99] is similar to a vector
clock but has only R (≤ N) entries whereas a full vector clock has N entries.
Each process is associated with one entry in the clock vector by a mapping
function, f(·), which in the case of the REV clock is process-ID mod R.
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To address the question, pointed out in [TRA99], of how the choice of map-
ping function affects the performance of a fixed size vector clock, we introduce
the class of Non-Uniformly Mapped R-Entries Vector clocks (NUREV ), which
generalize the REV clock by allowing each process to use its own mapping
between process-IDs and clock-entry indices and to change this mapping over
time. These two generalizations make it possible to define a class of R-entry
vector clocks where each clock may automatically tune itself to perform better
for the current communication patterns in the system. Formally a NUREV
time-stamping system is a tuple

(
〈S,

NUREV→ 〉, NUREV.stamp
)

where:

- S is a set of tuples of the form 〈pi, Vi, fi〉 where pi is an integer that
identifies each process in the system, Vi is a 1−dimensional vector of R
integers and fi is a function from process-ID to entry index {1, . . . , R} (fi

may be different in different tuples).

- NUREV.stamp is defined by the rules
NUREV0) Initial value:

pi = unique process-ID ∈ {1, . . . , N} ;
fi = some mapping function ;

Vi[r] = 0 ∀r ∈ 1, . . . , R.
NUREV1) When a send or local event with
timestamp 〈pi, V

+
i , f+

i 〉 is generated:
f+

i = updated fi ;
V +

i [r] = max
{
Vi[fi(j)] : ∀j.f+

i (j) = r
}

+
own(r), where

own(r) =
{

1 if f+
i (pi) = r

0 otherwise.
NUREV2) When a message with timestamp
〈s, Vs, fs〉 is received:

f+
i = updated fi ;

Vi[r] = max {max(Vi[fi(j)], Vs[fs(j)]) :
∀j.f+

i (j) = r
}

+ own(r).

- Let 〈pi, Vi, fi〉, 〈pj , Vj , fj〉 ∈ S then:

〈pi, Vi, fi〉 NUREV→ 〈pj , Vj , fj〉 ⇔
((pi = pj ∧ Vi[fi(pj)] < Vj [fj(pj)]) ∨ (pi 6= pj∧
(∀k.Vi[fi(k)] ≤ Vj [fj(k)]) ∧ (Vi[fi(pj)] < Vj [fj(pj)])))

Intuitively, the NUREV TSS applies the ordinary Vector Clock update and
comparison rules on (implicitly) expanded versions of the R-entry vectors by
using the mapping functions to access the clock values. Note that the NUREV
rules do not impose any restrictions on how the mapping function fi looks nor
on how it is updated. Observe also that the ordinary Vector Clock is a NUREV
clock using the identity function on N entries and the REV clock of [TRA99] is
a NUREV clock using the fixed mapping function process-ID mod R.
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An important property of the NUREV logical clocks is that they all are
plausible clocks.

Theorem 2.3.1 NUREV clocks are plausible Time-Stamping Systems.

Proof:
First we need to prove that NUREV is a Time-Stamping System and then

that NUREV is plausible. The former is proved by showing that the relation
NUREV→ is irreflexive and transitive. The later is proved by showing that NUREV
satisfies the definition of a plausible clock.

Let 〈pi, Vi, fi〉 ∈ S and assume towards a contradiction that 〈pi, Vi, fi〉 NUREV→
〈pi, Vi, fi〉. Then we have

〈pi, Vi, fi〉 NUREV→ 〈pi, Vi, fi〉 ⇔ (pi = pi ∧ Vi[fi(pi)] < Vi[fi(pi)])

which is a contradiction. So NUREV→ is irreflexive.
To prove that NUREV is transitive let 〈pi, Vi, fi〉, 〈pj , Vj , fj〉, 〈pk, Vk, fk〉 ∈ S

and assume that 〈pi, Vi, fi〉, NUREV→ 〈pj , Vj , fj〉 and 〈pj , Vj , fj〉 NUREV→ 〈pk, Vk, fk〉.
The proof is done by case analysis on the sources of the events and follows below.

(pi = pj = pk) ⇒ (pi = pj ∧ Vi[fi(pj)] < Vj [fj(pj)]) ∧
(pj = pk ∧ Vj [fj(pk)] < Vk[fk(pk)])

⇒ (pi = pk ∧ Vi[fi(pk)] < Vk[fk(pk)])

⇒ 〈pi, Vi, fi〉 NUREV→ 〈pk, Vk, fk〉

(pi 6= pj = pk) ⇒ (pi 6= pj ∧ ∀l.Vi[fi(l)] ≤ Vj [fj(l)] ∧
Vi[fi(pj)] < Vj [fj(pj)]) ∧
(pj = pk ∧ Vj [fj(pk)] < Vk[fk(pk)])

⇒ (pi 6= pk ∧ ∀l.Vi[fi(l)] ≤ Vk[fk(l)] ∧
Vi[fi(pk)] < Vk[fk(pk)])

⇒ 〈pi, Vi, fi〉 NUREV→ 〈pk, Vk, fk〉

(pj 6= pi = pk) ⇒ (pi 6= pj ∧ ∀l.Vi[fi(l)] ≤ Vj [fj(l)] ∧
Vi[fi(pj)] < Vj [fj(pj)]) ∧
(pj 6= pk ∧ ∀l.Vj [fj(l)] ≤ Vk[fk(l)] ∧
Vj [fj(pk)] < Vk[fk(pk)])

⇒ (pi = pk ∧ Vi[fi(pk)] < Vk[fk(pk)])

⇒ 〈pi, Vi, fi〉 NUREV→ 〈pk, Vk, fk〉
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(pk 6= pi = pj) ⇒ (pi = pj ∧ Vi[fi(pj)] < Vj [fj(pj)]) ∧
(pj 6= pk ∧ ∀l.Vj [fj(l)] ≤ Vk[fk(l)] ∧
Vj [fj(pk)] < Vk[fk(pk)])

⇒ (pi 6= pk ∧ ∀l.Vi[fi(l)] ≤ Vk[fk(l)] ∧
Vi[fi(pk)] < Vk[fk(pk)])

⇒ 〈pi, Vi, fi〉 NUREV→ 〈pk, Vk, fk〉

(pi 6= pj 6= pk) ⇒ (pi 6= pj ∧ ∀l.Vi[fi(l)] ≤ Vj [fj(l)] ∧
Vi[fi(pj)] < Vj [fj(pj)]) ∧
(pj 6= pk ∧ ∀l.Vj [fj(l)] ≤ Vk[fk(l)] ∧
Vj [fj(pk)] < Vk[fk(pk)])

⇒ (pi 6= pk ∧ ∀l.Vi[fi(l)] ≤ Vk[fk(l)] ∧
Vi[fi(pk)] < Vk[fk(pk)])

⇒ 〈pi, Vi, fi〉 NUREV→ 〈pk, Vk, fk〉

Thus the NUREV clock is a Time-Stamping System since NUREV→ is both ir-
reflexive and transitive.

We need now to proceed by proving that the NUREV TSS is plausible.
Let a, b ∈ H be two arbitrary events such that NUREV (a) = 〈pi, Vi, fi〉 and

NUREV (b) = 〈pj , Vj , fj〉.
It is easy to see that

∀a, b ∈ H : a = b⇔ a
NUREV= b.

If a and b occurred at the same site then P→ will establish their causal relation
correctly by comparing Vi[fi(pj)] and Vj [fj(pj)].

Consider the case when a and b occurred at different sites. If a → b then
from the definition of NUREV.stamp we have that ∀l.Vi[fi(l)] ≤ Vj [fj(l)] and

Vi[fi(pj)] < Vj [fj(pj)] must hold. This is also what NUREV→ requires so

a→ b ⇒ a
NUREV→ b

and thereby proving the NUREV TSS to be plausible.
¤

2.4 Analysis of event orderings using plausible
clocks

To come up with a gnomon on which to base decisions regarding which processes
should share vector entries, we should identify the cases where such a clock may
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incorrectly order a pair of concurrent events and draw conclusions about what a
mapping function should be aiming at, to recognize as many concurrent events
as possible. The results in this section are formalized for NUREV clocks. They
can be adapted to any plausible clock in which a notion of mapping between
processes and clock entries can be defined.

We assume a global time model, where t(ei) denotes the time when event
ei happened. This assumption is not for the algorithms, but only for analyzing
the clocks’ behaviour. For any event ei with timestamp 〈pi, Vi, fi〉, we introduce
(again, for the analysis’ sake) a corresponding N -entry vector xp(Vi), where
xp(Vi)[j] = Vi[fi(j)]. We call xp(Vi) the expanded form of Vi. For two vectors
xp1, xp2 we say that xp1 > xp2 iff xp1[i] ≥ xp2[i] for all i and there is at least
one entry j such that xp1[j] > xp2[j]. For the following, consider ei, ej be
two arbitrary events of processes pi, pj (pi 6= pj) in a system execution and let
〈pi, Vi, fi〉, 〈pj , Vj , fj〉 be their corresponding NUREV timestamps.

Lemma 2.4.1 If Vi[fi(pi)] > Vj [fj(pi)] then ei

NUREV

6→ ej and ei 6→ej.

Proof: Assume towards a contradiction that ei
NUREV→ ej . Then, according to

the definition of NUREV→ (cf. section 2.3) we either have that:

(i) pi = pj and Vi[fi(pj)] < Vj [fj(pj)] which is a contradiction; or

(ii) that pi 6= pj and ∀k.Vi[fi(k)] ≤ Vj [fj(k)], that is, we have Vi[fi(pi)] ≤
Vj [fj(pi)] and a contradiction again.

Now, assume towards a contradiction that ei→ej . We have two cases:

(i) ei and ej are events of the same process. Then there has to be at least one
invocation of the NUREV1 or NUREV2 update rules between them.
Both of these increase the own entry of the process by at least 1, so we
have that Vi[fi(pi)] < Vj [fj(pi)] which is a contradiction.

(ii) ei and ej are events of different processes, then there has to at least one
invocation of the NUREV2 rule that merges the timestamp of ei or an
event that is causally preceded by ej with the clock of the process of ej

(this either precedes ej or is the event ej). Then be the definition of
NUREV2 we have Vj [fj(pi)] ≥ Vi[fi(pi)] which is a contradiction.

¤

Lemma 2.4.2 If (Vi[fi(pi)] > Vj [fj(pi)])∧(Vi[fi(pj)] < Vj [fj(pj)]) then ei

NUREV

‖
ej and ei‖ej.

Proof: By applying the previous lemma (2.4.1) in both directions we get

ei

NUREV

6→ ej , ei 6→ej and ej

NUREV

6→ ei, ej 6→ei. Then, from the definitions

of
NUREV

‖ and ‖ (cf. section 2.2), it follows that ei

NUREV

‖ ej and ei‖ej . ¤
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Notice that for Full Vector clocks and if the timestamp of each event includes
the identity of the process that executed it, the condition in the latter lemma
is both necessary and sufficient for the two events being concurrent [BM93].

In the following we analyze the conditions for NUREV to incorrectly relate
a pair of concurrent events. We first define some terms that will be useful in the
rest of this section. Given an event ei and its corresponding NUREV timestamp
〈pi, Vi, fi〉, we call:
• Vi[fi(pi)]: ei’s own key .
• Vi[fi(pj)] (pi 6= pj): pi’s presumption of the own key of pj ’s latest event

preceding ei. (For the limit case when there is no event by pj preceding ei,
consider the initializing event by each process, which sets all the vector
entries to 0, to precede the first events in the executions of all processes).

Further, we call a sequence of events ei, em1 . . . emn
, ej the value-propagating

sequence for the presumed key of pk in ej if the value of Vj [fj(pk)] originates from
Vi[fi(pi)], that is, the sequence of events is such that ei → em1 → · · · → emn

→
ej , the events have timestamps with mapping functions such that fm1(pi) =
fm1(p1), fm2(p1) = fm2(p2), . . . fmn(pn−1) = fmn(pn) and fj(pn) = fj(pk) for
some set of process-IDs {p1 . . . pn}.

Lemma 2.4.3 If for two events ei and ej Vi[fi(pi)] ≤ Vj [fj(pi)] then either
ei → ej or ei‖ej and there exists an event timestamped 〈pk, Vk, fk〉 by a process
pk (pk 6= pi) such that ek = ej or ek → ej and Vi[fi(pi)] ≤ Vk[fk(pk)] and there
is a value-propagating sequence of events for the presumed key of pi in ej from
ek to ej.

Proof: From lemma 2.4.1 it follows that ej 6→ei. Then either ei→ej or ei‖ej .
In the latter case, consider the possible origins of ej ’s presumed key of pi (i.e.
the value of Vj [fj(pi)]). There are four cases:

(i) Vj [fj(pi)] is shared with the own key of pj in ej , that is, fj(pi) = fj(pj).
Then ej is the ek in the lemma.

(ii) The value of Vj [fj(pi)] was last increased by a previous event e′j at pj

and V ′
j [f ′j(pi)] was shared with the own key of pj , that is, f ′j(pi) = f ′j(pj).

Then e′j is the ek in the lemma.

(iii) The value of Vj [fj(pi)] was last increased when pj ’s presumption of pi’s
key became shared with the (larger) presumed key of another process pm

either in the timestamp ej or in the timestamp of a preceding event e′j
of pj . Then we can apply the lemma recursively to find the origin of the
value of Vj [fj(pm)] or V ′

j [f ′j(pm)], respectively.

(iv) The value of Vj [fj(pi)] was received from another process pm in the times-
tamp of a send event and message em to pj (em → ej). Then we can
apply this lemma recursively to em to find the origin of the value of the
presumed key of pi in em and ej .
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To see that the recursions in case (iii) and case (iv) are well founded, note
first that it follows from the NUREV update rules that all values that occur in
clock entries have to originate from the own key of some process, because a new
value can only be introduced by the addition in the update of the own key of a
process. When two or more other keys are to share one clock entry, the value
of that entry becomes the largest value from a set of already present values.

Now, in case (iii) the recursion is done on the largest presumed key of pm

that is mapped to the same clock entry as the presumed key of pi. There may
be several such keys for this entry but regardless of which one we choose, its
origin will be traceable to a preceding event.

In case (iv) the recursion is done on an event em preceding ej , so each
recursion brings us closer to the start of the execution (and the initializing
event , which, however, can only be reached if the inflated value of ej presumed
key of pi is 0, which is impossible since it should be inflated).

¤

Intuitively, clocks advance because of precedence or merged entries, i.e. using
NUREV clocks, ej ’s presumption of the own key of pi’s latest event preceding ej

can be an inflated value, since pi might have shared its entry in pj ’s clock with
another process in the meanwhile. Note that when using Full Vector clocks, ej ’s
presumption of the own key of pi’s latest event ei preceding ej is exactly equal
to ei’s own key.

Lemma 2.4.4 If ei→ej and Vi[fi(pi)] = a and Vj [fj(pi)] = a + B (for some
B > 0) and there is no event e′i by pi such that ei → e′i → ej then for all el

i

(1 ≤ l ≤ x, x ≤ B) such that el
i‖ej and that ei → e1

i → . . .→ el
i → . . .→ ex

i , it

is possible that el
i

NUREV→ ej.

Proof: Since ei→ej , xp(Vi) < xp(Vj). Process pi must increase its vector by
modifying at least its own entry (fi(pi)) by at least one in each such el

i, thus
causing their timestamp vectors to compare similarly with Vj . Since Vj [fj(pi)] =
a + B this can cause NUREV timestamps to order ej with up to B consecutive
events of pi which follow ei and which are concurrent with ej (cf. Figure 2.1,
part A). ¤

This means that if ej ’s presumption of the own key of pi’s last preceding
event is inflated by B, this may result in ej to be NUREV-ordered with a
maximum number of B events of pi which are in fact concurrent with ej . Since
the length of such a sequence of events el

i as described in the lemma is related
to B, let us call it a Bdep-error-prone sequence of pi caused by the event pair
(ei, ej) (cf. Figure 2.1, part A). Moreover, let us define time-to-hear-back(ei, pj):
if e1

i , . . . , e
h
i (h ≥ 1) is the minimal sequence of pi’s events between (i) event ei by

pi that precedes an ej of pj such that there is no e′i by pi which ei → e′i → ej and
(ii) an event eh+1

i (h ≥ 0) such that ej → eh+1
i , then time-to-hear-back(ei, pj) =

h. If there is no such eh+1
i , consider instead the last event of pi in the execution.

In other words, after an event ei that is directly preceding an event (ej) of pj ,
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i a + B i ≥ a + B

e1
j eh+1

jeh
jej

PartB

pj

pi

i a

el
j

ei e+
i

ej

a i ≥ a + 1
i a i ≥ a + 1

i a + B
case(2)case(1)

i
preceded by ej

pi’s first event

ej

i

pj

pi

PartA

≥ a + h + 1

pj

e1
i el

i eB−1
i eB

iei ei e1
i el

i eh
i eh+1

i eB
i

i a + B

i ≥ a + B

i ≥ a + 1

pi

Figure 2.1: Possible errors by ej ’s inflated presumption of ei’s own key (pi’s
last event preceding ej). Vertical lines represent events’ timestamps. Cir-
cles indicate events that are pairwise concurrent but may be NUREV-ordered.
Part A: The Bdep-error-prone sequence is bounded by B (case 1) and time-to-
hear-back(ei, pj) (case 2). Part B: The Bindep-error-prone sequence is bounded
by time-to-hear-again(pi, ej).

the time-to-hear-back(ei, pj) is the time (number of events) for pi to hear back
from pj , i.e. to reach an event eh+1

i that is directly preceded by ej .

Lemma 2.4.5 Given the precondition in lemma 2.4.4, the length of the cor-
responding Bdep-error-prone sequence is bounded from above by time-to-hear-
back(ei, pj).

Proof: The timestamp of ej (or of a subsequent event that causes the prece-
dence between ej and eh+1

i ) informs pi about the inflation of ei’s own value by
pj . Moreover, this precedence will actually establish order among the events of
the processes (cf. Figure 2.1, part A). ¤

The last lemma and its corollary imply that the length of a Bdep-error-prone
sequence of some pi caused by some (ei, ej) is bounded from above by (i) B, the
difference between ei’s own key and ej ’s presumption of it and (ii) the time-to-
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hear-back(ei, pj).

Lemma 2.4.6 Consider the case that ei→ej and there is no event e′i by pi such
that ei → e′i → ej and Vi[fi(pi)] = a and Vj [fj(pi)] = a + B (for some B > 0).

If there exists e+
i by pi such that ei → e+

i and e+
i ‖e1

j by pj and e+
i

NUREV→ e1
j ,

where e1
j = ej or ej → e1

j , then e+
i

NUREV→ ek
j for each ek

j such that e1
j → ek

j ,
and, specifically, there may exist a subsequence {el

j} of the ek
j ’s by pj where

el
j‖e+

i .

Proof: Let Ve denote the vector of the timestamp of an event e. If e+
i

NUREV→ e1
j

then from the definition of NUREV→ we have that xp(Ve+
i
) < xp(Vel

j
) and from

ej → el
j and the NUREV update rules we have xp(Ve1

j
) < xp(Vel

j
). This implies

that e+
i

NUREV→ el
j . ¤

This means that if ej ’s presumption of the own key of pi’s last preceding
event (ei) is inflated by B, this may result in some event(s) e+

i of pi subsequent
to ei to be NUREV-ordered with a sequence of events of pj subsequent to ej

but actually concurrent with e+
i (cf. Figure 2.1, part B). Since the length of

such a sequence of el
j events as described in the lemma is not related to B, let

us call it a Bindep-error-prone sequence of pj caused by (ei, ej). Moreover, let
us define time-to-hear-again(pi, ej) to be the length h of the sequence of pj ’s
events between ej and the event eh+1

j (h ≥ 0) which is the first event by pj

that is preceded both by ei and e+
i of pi, where: ei is the event by pi directly

preceding ej , i.e. there is no e′i by pi such that ei → e′i → ej ; and e+
i is the

event by pi that is directly preceded by ei. If there is no such eh+1
j , consider

instead the last event of pj in the execution. Note that for infinite executions
this implies that time-to-hear-again(pi, ej) can have an unbounded value. In
other words, after an event (ei) of pi that is directly preceding an event ej (of
pj), the time-to-hear-again(pi, ej) is the time, i.e. number of events, to hear
again from pi, i.e. to have the first event eh+1

j at pj which is directly preceded
by an event of pi subsequent to ei.

Lemma 2.4.7 Given the precondition in lemma 2.4.6 and the corresponding
Bindep-error-prone sequence, the length of the sequence is bounded from above
by time-to-hear-again(pi, ej).

Proof: We know from lemma 2.4.6 that given the preconditions there we have
that e+

i
NUREV→ ek

j for each event ek
j of pj such that e1

j → ek
j . The Bindep-error-

prone sequence starting at e1
j consists of e1

j and those ek
j that are concurrent to

e+
i . Since the event eh+1

j , which ends the time-to-hear-again(pi, ej) sequence, is
preceded by e+

i , the sequence of events ek
j that are concurrent to e+

i has to end
before eh+1

j . So the length of the Bindep-error-prone sequence is bounded from
above by time-to-hear-again(pi, ej). ¤
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Combining lemmas 2.4.4, 2.4.5, 2.4.6 and 2.4.7, we get:

Corollary 2.4.1 If during the clock update of an event ej the presumed value
of pi’s last preceding event ei is inflated by B > 0, then the corresponding Bdep-
error-prone sequence of pi caused by (ei, ej) and the potential Bindep-error-prone
sequence pj caused by (ei, ej), together imply a total number of possibly NUREV-
ordered concurrent events which may be as high as the product of the length of
the two sequences. The total number of errors implied by the inflated value is
bounded from above by:

min{time-to-hear-back(ei, pj), B} × time-to-hear-again(pi, ej)
≤ B × time-to-hear-again(pi, ej)

Hence, considering a process pj deciding the new mapping when executing an
event ej , the goals of its adaptive mapping function to minimize the number of
NUREV-ordered concurrent event pairs should be:

Inflation control
In the timestamp of ej the sharing of entries must be arranged so that the
inflation of the resulting timestamp’s presumed values for each process’
latest preceding event is kept minimal.

Next-Contact influence
In the timestamp of ej the sharing of entries must be such that: the longer
the time intervals (length of event sequences) until pj and pi communicate
again after ej (directly, or indirectly, via another process in the system),
the smaller inflation is permitted in ej ’s presumption about pi’s last pre-
ceding event.

The first conclusion implies that values with large differences should not
be assigned to share the same entry, since the lower one must be equalized to
the higher one to maintain plausibility. The second conclusion implies that an
optimal adaptive mapping may need information about the future in order to de-
cide how processes should share entries in a timestamp value. Such information
cannot be assumed in general in distributed executions.

In the next sections we define algorithmic goals for satisfying the conclusions
and we describe the design of algorithms for adaptive mapping functions to
achieve them.

2.5 MinDiff NUREV clock

Armed with the conclusions above one can see that errors are introduced when
a process’ presumption of the own key of another process is inflated, so a good
plausible clock should try to minimize this inflation.

There are two operations on a NUREV clock where inflation can occur. The
first operation is the local step or the send operation where inflation can occur
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only if the local process shares its clock entry with another process. This can
be avoided by always assigning a clock entry for the local process’ own exclusive
use. The second case is the receive operation, where it is impossible to avoid
inflation in all cases since a clock with R entries cannot hold more than R
different values.

We now introduce the MinDiff NUREV clock that aims at minimizing
the inflation at each receive operation (it avoids inflation at local and send
operations by always using an exclusive entry for its own key). How the
new MinDiff clock value and mapping are calculated at a receive operation is
described below and visualized by the example in Figure 2.2.

Let 〈pi, Vi, fi〉 be the current clock of process pi when a timestamp 〈pj , Vj , fj〉
is received from process pj . First the clock and the timestamp are merged into an
N -entry vector Wi, where each entry is marked with its corresponding process:

Wi[k] = max(Vi[fi(k)], Vj [fj(k)]) ∀k ∈ {1, . . . , N};
Wi[k].id = k ∀k ∈ {1, . . . , N}.

Note that there can be at most 2R different values in Wi as Vi and Vj can hold
only R different values each.

In order to keep the inflation down, the MinDiff clock tries to minimize
the sum of the inflation suffered by all process entries. To do this we need to
select which processes should share clock entries in the new clock vector. Let
Ŵi be all entries of Wi except Wi[i], sorted in increasing order and (Ck,l) be a
(lower triangular) cost matrix defined as follows:

Ck,k = 0, k ∈ {1, . . . , N};
Ck,l = Ck,(l+1) + Ŵi[k]− Ŵi[l] for l < k.

An entry Ck,l is the cost (inflation) incurred by letting the set

{pn|n = Ŵi[r].id for k ≤ r ≤ l}
of processes share the same entry in the updated clock vector. (The cost
of computing Ŵi and C is O(N) and O(R2), respectively.) A minimal-cost-
assignment of processes to clock-entries corresponds to a partitioning of the
sorted sequence Ŵi into R−1 blocks (one clock entry is reserved for the process
i itself, to avoid recomputing the mapping function upon send and local events).

In Algorithm 2.1 we present a new algorithm that finds a good K-partitioning
of a L-element sequence in O(K · L) steps. Initially the algorithm places the
K − 1 partition boundaries in at the first K − 1 of the L − 1 places where a
partition boundary can be placed. Let bk be the position of the k-th partition
boundary and let b0 and bK denote position 0 and L, respectively. Define the
cost of the partitioning b1, · · · , bK−1 as

cost(b1, · · · , bK−1) =
∑K

k=1 Cbk,bk−1+1.

The partitioning proceeds by selecting the rightmost partition boundary and
moving it to the right until it reaches a local cost minimum. Then it selects
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Algorithm 2.1 The K-partitioning algorithm used by MinDiff.
b0 ← 0; bK ← L; bk ← k for k = 1, . . . ,K − 1
repeat

for k = 1, . . . ,K − 1 do
while cost(b1, · · · , bk, · · · , bK−1) >

cost(b1, · · · , bk + 1, · · · , bK−1)
and bk + 1 < bk+1 do bk ← bk + 1

until no bk changed.
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Figure 2.2: Example of MinDiff clock update at message reception. (See
section 2.5 for the details.)

the next partition boundary to the left and moves it to the right until it either
finds a local minimum or reaches the first boundary. This procedure is repeated
for all boundaries until no changes occur. Note that since the boundaries only
move to the right, the algorithm needs at most O(K ·L) steps to terminate. (In
our case K is R− 1 and L is at most 2R.)

Once the partitioning of the processes into R− 1 blocks is decided, the new
mapping function is determined by letting the processes in each block share an
entry. The new clock entry values can be computed according to the NUREV
rules (in fact, the new value for each entry r is simply Ŵi[br]).

To store any arbitrary mapping that comes as a result of the grouping of
entries according to the MinDiff clock in the timestamp requires N values of
log2 R bits each, so the total space requirement of a MinDiff timestamp would
be R sizeof(clock entry) + N log2 R bits. This is significantly smaller than the
N clock entries required by the full-size vector clock — cf. figure 2.3 for a
comparison of the growth of the corresponding timestamp values as the system
size grows. Still, it is challenging to study how to follow the conclusions of our
analysis for mappings with constant-size representation.
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Figure 2.3: The growth of timestamp size as a function of the number of pro-
cesses. The size of a clock entry is 4 bytes.

2.6 ROV-MRS NUREV clock

Consider a NUREV clock which, at each process, maps R − 1 of the other
processes to exclusive clock entries and all other processes to the remaining
clock entry, called the “others entry”. The owner of a clock and the source
process of a timestamp are always assigned an exclusive clock entry, for the
same reason as in the MinDiff clock. We call this clock the R-others vector
clock (ROV). The formal description of the ROV clock algorithm is given in
figure 2.4.

This mapping-class has constant-size representation, but the issue of which
processes should be allocated to exclusive clock entries in each process’ clock
remains to be solved. Following the conclusions from section 2.4, we propose
the following strategy:
Most Recent Senders (ROV-MRS) mapping: In this policy the R − 2 last pro-
cesses the process received messages from are mapped to exclusive entries in the
clock. If there are less than R−2 such processes, that is, there are some unused
exclusive entries, those entries are allocated to processes that had exclusive en-
tries in the most recently received timestamps. All other processes (apart from
the process itself) are mapped to the others-entry. Since each process assigns
exclusive entries to its most recent senders, it will thus add no inflation to their
entries. Since these processes are likely to take longer than others to send some-
thing again (time-to-hear-again may be longer than the other processes), such
a mapping would agree well with the [Next-Contact]-conclusion of the analysis.

It is worth pointing out that considering the symmetric strategy, namely a
Least Recent Senders (ROV-LRS) mapping, the results from section 2.4 argue
against it: a process which is a non-sender for long time might send a message
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Let ROV =
(
〈S,

ROV→ 〉, ROV.stamp
)

where

- S is a set of tuples of the form 〈pi, Vi, fi〉 where pi is an integer that
identifies each process in the system, Vi is a 1−dimensional vector
of R integers and fi is a function from process-IDs to {1, . . . , R}
such that pi and at most R − 2 other process-IDs are bijectively
mapped to {1, . . . , R − 1} and all other process-IDs are mapped
to R

- ROV.stamp is defined by the rules
ROV0) Initial value:

pi = unique process-ID ∈ {1, . . . , N} ;
fi = {pi 7→ 1, ∀j 6= pi.j 7→ R} ;

Vi[fi(j)] = 0 ∀j ∈ 1, . . . , N

ROV1) Before a send or local event with
timestamp 〈pi, V

+
i , fi〉 is generated:

fi is not changed ;
V +

i [fi(pi)] = Vi[fi(pi)] + 1.
ROV2) When a message with time-stamp 〈ps, Vs, fs〉
is received:

f+
i = updated fi ;

Vi[r] = max {max(Vi[fi(j)], Vs[fs(j)]) :
∀j.f+

i (j) = r
}

+ own(r).

- Let 〈pi, Vi, fi〉, 〈pj , Vj , fj〉 ∈ S then:

〈pi, Vi, fi〉 ROV→ 〈pj , Vj , fj〉 ⇔
(pi = pj ∧ Vi[fi(pj)] < Vj [fj(pj)]) ∨ (pi 6= pj∧
(∀k.Vi[fi(k)] ≤ Vj [fj(k)]) ∧(Vi[fi(pj)] < Vj [fj(pj)]))

Figure 2.4: Definition of the R-others vector clock. Note that the set of allowed
mapping functions is restricted to those where only entry R is shared by more
than one process. The operation updating the mapping should only produce
mappings from that set.
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soon (i.e. time-to-hear-again can be short) and hence establish order among
events, so it may not need an exclusive entry; that entry could be used to
prevent other errors instead.

2.7 Experimental evaluation

We first study peer-to-peer communication systems the main target application
domains for such algorithms. Peer-to-peer systems can have a wide variety of
communication patterns, here we study such systems with uniform random as
well as more structured clustered random communication patterns. As shown
in section 2.4, the communication patterns play a special role in the accuracy of
the time-stamping systems. We study the client-server communication systems
separately, as they have very different communication patterns. In particular,
considering that direct communication will only take place between the clients
and the server(s), the servers have a key-role, since they are likely the ones
to cause and propagate a large portion of the errors. A parallel consideration
is that the servers may also play key-role in the actual ordering of the events
(requests). However, for the purpose of enhancing the understanding of plausi-
ble clocks, we wish to discuss the algorithms’ accuracy in such communication
patters, as well. The conclusions of section 2.4 are compared with the outcome
of the evaluation. The plausible clocks we focus on are: the R-Entries Vec-
tor Clock (REV) [TRA99], our R-Others Vector Clock with the Most Recent
Senders (ROV-MRS) dynamic mapping and our MinDiff clock.

The k-Lamport clocks [TRA99] were not included as their behaviour is such
that their accuracy for small k is rather low, while after the first few values
of k, adding more entries in the vector, the accuracy does not improve. This
is explained by our analysis, since these clocks do not keep per-process infor-
mation in the clock. Similar is the effect of combining k-Lamport clocks with
other plausible clocks using the methodology in [TRA99]. Our experiments con-
firmed these conclusions. An experimental study on how the performance of the
combination of REV and k-Lamport clock depends on different system param-
eters, such as system size, communication pattern and local history length, is
presented in [TR01].

Experiments

The experiments were conducted by creating system histories of simulated dis-
tributed systems and annotating the events with timestamps from a number
of different plausible clocks and also a full vector clock to measure the accu-
racy of the plausible clocks. The system history is generated by letting each
(client/peer) process randomly select whether to send or receive a message or
to perform a local step. The destination of each message is selected at random
in the peer-to-peer and clustered peer-to-peer communication cases. In the
client-server case the server processes requests immediately and in FIFO order.
Figure 2.5, Figure 2.6 and Figure 2.7 shows results from the peer-to-peer, clus-
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tered peer-to-peer and client-server executions, which will be discussed further
below.

2.7.1 Peer-to-peer communication

Experiment description

The system history is generated by letting each process randomly select whether
to send or receive a message or to perform a local step. The destination of each
message is selected uniformly at random.

Figure 2.5 presents results from peer-to-peer experiments. In the experi-
ments there are 80 processes. The probability of sending or receiving a message
is 0.15.

Discussion of results

The MinDiffclock shows very good accuracy even for very small number of
clock entries (i.e. small R), as expected from the analysis and its design to
follow the [Inflation]-conclusion. However, the uniform random communication
leaves few communication patterns that could be exploited and as the length of
the execution grows and the relative significance of the start up and close down
phases diminish MinDiff’s advantage to, e.g., the REV clock, which uses an
arbitrary but uniform assignment of processes to clock entries and copes with
the randomness slightly better.

With the good accuracy of MinDiff at small numbers of entries combined
with Figure 2.3, which compares the MinDiff’s and Full Vector Clock’s times-
tamp sizes, the results look promising from the applicability point of view, espe-
cially when considering the desire for scalability in peer-to-peer systems. From
the intellectual-challenge point-of-view, constant-size representation of mapping
functions may deserve more investigation for proving bounds in their relative
performance.

The R-Others Vector Clock with the Most Recent Senders dynamic mapping
(ROV-MRS) shows comparable or better accuracy than REV clock for small
numbers of clock entries (i.e. small R).

2.7.2 Clustered peer-to-peer communication

Experiment description

The system history is generated by randomly assigning each process to one of
the clusters, each process will then randomly select whether to send message
to a process within the cluster, send a message to a process in another cluster,
receive a message or perform a local step. The destination of each message,
within or outside the cluster, is selected at random.

Figure 2.6 presents results from the clustered peer-to-peer experiments. In
the experiments there are 80 processes divided into 7 clusters. The probability of
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Figure 2.5: 80-process peer-to-peer systems with local history length of
250, 500 and 1000 events. The number of concurrent/total event pairs is
115 762 669/198 732 016, 318 673 228/798 700 528 and 813 886 635/3 177 599 340,
respectively.
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sending a message to a destination within the cluster is 0.15 while the probability
to send to a destination outside the cluster is 0.01.

Discussion of results

The communication patterns in the clustered peer-to-peer executions are more
structured and have a higher degree of concurrency since there are few causal
dependencies between the clusters. This is highly beneficial for MinDiff and
the R-Others Vector Clock with the Most Recent Senders policy as can be seen
in Figure 2.6.

Due to the clustered nature of the system it is likely that the own entries of
processes in the same cluster advance at approximately the same rate, while the
processes’ presumptions about the own entries of processes in other clusters stay
constant most of the time since they are only updated when rare cross-cluster
communication occur. In this type of execution the MinDiff clock can avoid
inflation by grouping processes from the other clusters to a small number of
entries (e.g. one entry per cluster) and processes in the same cluster to one or
more entries. This agrees well with the [Inflation]-conclusion.

The R-Others Vector Clock with the Most Recent Senders will most often
use single entries for (some of) the processes in the same cluster while processes
in other clusters will all use the others-entry.

2.7.3 Client-server communication

Experiment description

The system history is generated by letting each client randomly decide whether
to send a request, receive a response or do a local step. The server processes
requests immediately and in FIFO order. Figure 2.7 shows results from client-
server executions. The probability for a client to send a request to or receive a
response from the server in a time step is 0.15.

Discussion of results

Consider the servers’ and the clients’ perspectives separately:
When a server receives a message from a client:
• The time-to-hear-back (from the server) for that client is likely to be very

small, since in most cases the client simply waits for the server’s reply.
Minimizing the inflation is the key to accuracy here, justifying the Min-
Diff clock.
• The time-to-hear-again from that client might be large, hence it may be

better to have unique entries for each of the recently requesting clients fol-
lowing conclusion [Next-Contact] of section 2.4, justifying the ROV-MRS
policy. However, later in the execution, that client may be displaced in the
server’s clock by new, more recently requesting clients (if there are more
than R−2 of them). In that case it will have to share the others-entry with
all other processes, resulting in inflation of its value or the other processes’
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Figure 2.6: 80-process clustered peer-to-peer systems with 7 clusters and local
history length of 250, 500 and 1000 events. The number of concurrent/total
event pairs is 31307142/31700703, 196688513/199170861, 789520315/799500078
and 3 135 312 726/3 174 969 141, respectively.
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Figure 2.7: 1-server-99-client systems with local history length of 100 and 500
events. The number of concurrent/total event pairs is 28597743/80334150 and
292 840 959/2 063 356 680, respectively.
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values. (In the many servers case and if the nodes form clusters (disjoint
or with small overlaps), the method should be appropriate, especially if
the cluster size is smaller than or close to R.)

• Since the time-to-hear-again (from the same client) can be arbitrarily large
any (even small) inflation can cause arbitrarily many errors in any of the
algorithms (cf. lemma 2.4.6). MinDiff (which uses the minimization of
inflation as a tool), tends to show better performance than REV, (which
uses the arbitrary mapping as a tool).

The latter argument, from the perspective of a client shows that:
• When a client inflates the value of another client, both the time-to-hear-

again and time-to-hear-back between the two clients depend on when the
next requests from both the clients will be issued (they communicate in-
directly, via the server). These values can be arbitrarily large, even un-
bounded if any of the two clients stops issuing requests.

• When a client inflates the value of the server, the client may have some
estimation on the time-to-hear-back (server from client) and time-to-hear-
again (client from server) values, e.g. if it knows when it will send its next
request.

A general conclusion is that the particular communication patterns play a
very significant role in the client-server communication case. An algorithm that
could give guarantees would need information about the future (e.g. knowledge
or estimation of the request frequency), as also concluded in section 2.4. If
such information is available or predictable, it may be possible to have even
better performance from within applications, by adopting next-contact-aware
conditions in the update of the mapping functions.

2.8 Discussion

Logical clocks have been studied extensively in the distributed computing liter-
ature. Still there are aspects of them which need to be discovered to enhance
performance and scalability towards satisfying needs of future distributed sys-
tems, e.g. in the context of scalable multicast and collaborative applications
in peer-to-peer systems. This paper makes steps for an in-depth study on the
accuracy of vector timestamps with fixed and small number of entries, aiming
at scalable solutions for large systems. The work builds on the work of Torres-
Rojas and Ahamad [TRA99], where the notion of plausible clocks and some
plausible clock algorithms were introduced.

In particular, our contributions are the following: (i) We introduce the
Non-Uniformly Mapped R-Entries Vector (NUREV) clocks, a general class of
clocks that extends and includes the R-Entries Vector (REV) clocks algorithm
of [TRA99] and the Full Vector clocks. With NUREV clocks each process in the
system can use a different mapping between process-IDs and clock-entry indices,
the idea being that dynamic mappings may allow self-tuning and adaptation to
improve the accuracy of the clocks. (ii) We prove that NUREV clocks are plau-



60 CHAPTER 2. ADAPTIVE PLAUSIBLE CLOCKS

sible. This makes it easier to design new adaptive plausible clock algorithms.
(iii) Furthermore, we analyze the ways that these clocks may relate causally in-
dependent event pairs. Our analysis resulted in a set of criteria to concentrate
on in order to improve performance. (iv) These, in turn, resulted in new adap-
tive mapping strategies, MinDiff and ROV-MRS, which show very competitive
performance for small clock/timestamp sizes, that is, where it matters in prac-
tice. The experimental evaluation of the performance of our proposed methods
agrees with the conclusions of the analysis part and also shows promising results
from the applicability point of view.

2.9 Future Work

Our work points to new issues that need investigation. One of them is the
issue of constant-size representation of mapping functions, for example while
our MinDiff clock provides outstanding performance for small timestamps,
it is, strictly speaking, not a fixed-size clock, even though its timestamp size
grows very slowly with N . Although from the applicability point of view, as is
shown in the paper, this is no obstacle to the performance and scalability of the
system, from the intellectual point of view, it can be a challenging issue. Pos-
sible directions to investigate this include the use of appropriate approximated
mappings (e.g. low-pass filters or polynomials) or the use of smaller sets of
mapping functions that can be represented in constant space. Other important
and challenging research issues that follow from this research are (i) to study
the performance and accuracy of plausible clocks from an information-theory
point of view, (ii) to bound the size of the vector entries and (iii) to consider
dynamic group sizes and other varying parameters.
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Chapter 3

Lightweight Causal Cluster
Consistency1

Anders Gidenstam Boris Koldehofe

Marina Papatriantafilou Philippas Tsigas

Abstract

Within an effort for providing a layered architecture of services supporting multi-

peer collaborative applications, this paper proposes a new type of consistency man-

agement aimed for applications where a large number of processes share a large set

of replicated objects. Many such applications, like peer-to-peer collaborative environ-

ments for training or entertaining purposes, platforms for distributed monitoring and

tuning of networks, rely on a fast propagation of updates on objects, however they

also require a notion of consistent state update. To cope with these requirements and

also ensure scalability, we propose the cluster consistency model. We also propose a

two-layered architecture for providing cluster consistency. This is a general architec-

ture that can be applied on top of the standard Internet communication layers and

offers a modular, layered set of services to the applications that need them. Further,

we present a fault-tolerant protocol implementing causal cluster consistency with pre-

dictable reliability, running on top of decentralized probabilistic protocols supporting

group communication. Our experimental study, conducted by implementing and eval-

uating the two-layered architecture on top of standard Internet transport services,

shows that the approach scales well, imposes an even load on the system, and provides

high-probability reliability guarantees.

Keywords: large scale group communication, consistency, collaborative environ-

ments, peer-to-peer systems, Internet application layer services.

1This is an extended version of the paper that appeared in the Proceedings of IICS 2005,
Paris, France, June 20-22, 2005 .
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3.1 Introduction

Many applications like collaborative environments (e.g. [MT95, GB97, CH93])
allow a possibly large set of concurrently joining and leaving processes to share
and interact on a set of common replicated objects. State changes on the ob-
jects are distributed among the processes by update messages (a.k.a. events).
Providing the infrastructure to support such applications and systems places
demands for multi-peer communication, with guarantees on reliability, latency,
consistency and scalability, even in the presence of failures and variable connec-
tivity of the peers in the system. Applications building on such systems would
also benefit from an event delivery service that satisfies the causal order relation,
i.e. satisfies the “happened before” relation as described in [Lam78].

The main focus of earlier research in distributed computing dealing with
these issues has its emphasis in proving feasible, robust solutions for achieving
reliable causal delivery in the occurrence of faults [BJ87, BSS91, RST91, KS98],
rather than considering the aforementioned variations in needs and behaviour.
Further, since the causal order semantics require that an event is delivered only
after all causally preceding events have been delivered, the need to always re-
cover lost messages can lead to long latencies for events, while applications often
need short delivery latencies. Moreover, the latency in large groups can also be-
come large because a causal reliable delivery service needs to add timestamp
information, whose size grows with the size of the group, to every event.

To improve the latency, optimistic causal order [BPRS98, RBAR00] can be
suitable for systems where events are associated with deadlines. In contrast to
the strict causal order semantics, optimistic causal order only ensures that no
events that causally precede an already delivered event are delivered. Events
that have become obsolete do not need to be delivered and may be dropped.
Nevertheless, optimistic causal order algorithms aim at minimizing the number
of lost events. In order to determine the precise causal relation between pairs of
events in the system, processes can use vector clocks [Mat89], which also allow
detection of missing events and their origin. However, since the size of the vector
timestamps grows linearly with the number of processes in the system, one may
need to introduce some bound on the growing parameter to ensure scalability.

Recent approaches for information dissemination use lightweight probabilis-
tic group communication protocols [BHO+99, EGH+01, GKM01, Kol03, PRMK03,
BEG04]. These protocols allow groups to change over time and to scale to many
processes by providing reliability expressed with high probability. In [PRMK03]
it is shown that probabilistic group communication protocols can perform well
also in the context of collaborative environments. However, per se these ap-
proaches do not provide any ordering guarantees.

In this paper we propose a consistency management method called causal
cluster consistency, providing optimistic causal delivery of update messages to
a large set of processes. Causal cluster consistency takes into account that for
many applications the number of processes which are interested in performing
updates can be low compared to the overall number of processes which are in-
terested in receiving updates and maintaining replicas of the respective objects.
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Therefore, the number of processes that are entitled to perform updates at the
same time is restricted to n, which also corresponds to the maximum size of the
vector clocks used. However, the set of processes entitled to perform updates is
not fixed and may change dynamically.

Our proposed approach is in line with and inspired from recent approaches
in multipeer information dissemination [BHO+99, EGH+01, GKM01], where
the aim is at what is called predictable reliability, guaranteeing that each event
is delivered to all non-faulty destinations with a high-probability guarantee.
We present a two-layer architecture implementing cluster consistency that can
make use of lightweight communication algorithms which can in turn run using
standard Internet (or other) transport services. Our method is also designed to
tolerate a bounded number of process failures, by using a combined push-and-
pull (recovery) method. We also present an implementation and experimental
evaluation of the proposed method and its potential with respect to reliability
and scalability, by building on recently evolved large-scale and lightweight prob-
abilistic group communication protocols. Our implementation and evaluation
have been carried out in a real network, and also in competition with concurrent
network traffic by other users.

Also of relevance and inspiration to this work is the recent research on peer-
to-peer systems and in particular the methods of such structures to share infor-
mation in the system (cf. e.g. [SMK+01, AGBH03, RFH+01, RD01, ZHS+04]),
as well as a recent position paper for atomic data access on CAN-based data
management [LMR02].

The paper is structured as follows: in Section 3.2 notation and definitions
are given, in Section 3.3 we introduce a layered architecture for achieving causal
delivery and the two-layered protocol implementing it. Section 3.4 discusses the
implementation and experimental evaluation of the proposed protocol running
on top of standard Internet transport services. The paper concludes with a
discussion of the contribution and future work.

3.2 Notation and problem statement

Let G = {p1, p2, . . .} denote a group of processes, which may dynamically join
and leave, and a set of replicated objects B = {b1, b2, . . .}. Processes maintain
replicas of objects they are interested in. Let B be partitioned into disjoint
clusters C1, C2, . . . with ∪iCi ⊆ B. Further, let C denote a cluster and p a
process in G, then we write also p ∈ C if p is interested in objects of C. Causal
cluster consistency allows any processes in C to maintain the state of replicated
objects in C by applying updates in optimistic causal order. However, at most n
processes (n is assumed to be known to all processes in C) may propose updates
to objects in C at the same time. Processes which may propose updates are
called coordinators of C. Let CoreC denote the set of coordinators of C. The
set of coordinators can change dynamically over time. Throughout the paper
we will use the term events when referring to update messages sent or received
by processes in a cluster.
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The propagation of events is done by multicast communication. It is not
assumed that all processes of a cluster will receive an event which was mul-
ticast, nor does the multicast need to provide any ordering by itself. Any
lightweight probabilistic group communication protocol as appears in the liter-
ature [EGH+01, GKM01, Kol03] would be suitable. We refer to such protocols
as PrCast. PrCast is assumed to provide the following properties: (i) an event
is delivered to all destinations with high probability; and, (ii) decentralized and
lightweight group membership, i.e. a process can join and leave a multicast
group in a decentralized way and processes do not need to know all members of
the group.

Within each cluster we apply vector timestamps of the type used in [ANB+95].
Let the coordinator processes in CoreC be assigned to unique identifiers in
{1, . . . , n} (a process which is assigned to an identifier is also said to own this
identifier). Then, a time stamp t is a vector whose entry t[j] corresponds to
the t[j]th event send by a process that owns index j or a process that owned
index j before (this is because processes may leave and new processes may join
CoreC). A vector time stamp t1 is said to be smaller than vector time stamp t2
if ∀i ∈ {1, . . . , n} t1[i] ≤ t2[i] and ∃i ∈ {1, . . . , n} such that t1[i] < t2[i]. In this
case we write t1 < t2.

For any multicast event e, we write te for the corresponding timestamp of
e. Let e1 and e2 denote two multicast events in C, then e1 causally precedes
e2 if te1 < te2 , while e1 and e2 are said to be concurrent if neither te1 < te2

nor te2 < te1 . Further we denote the index owned by the creator of event e as
index (e) and the event id of event e as 〈index (e), te[index (e)]〉.

Throughout the paper it is assumed that each process p maintains for each
cluster C a cluster-consistency-tailored logical vector clock (for brevity also re-
ferred to as a cct-vector clock) denoted by clockC

p . A cct-vector clock is defined
to consist of a vector time stamp and a sequence number. We write TC

p when re-
ferring to the timestamp and seqC

p when referring to sequence number of clockC
p .

TC
p is the timestamp of the latest delivered event while seqC

p is the sequence
number of the last multicast event performed by p. In Section 3.3 when de-
scribing the implementation of causal cluster consistency, we explain how these
values are used. Note, whenever we look at a single cluster C at a time, we write
for simplicity clockp, Tp, and seqp instead of clockC

p , TC
p , and seqC

p respectively.

3.3 Layered protocol for optimistic causal deliv-
ery

This section proposes a layered protocol for achieving optimistic causal deliv-
ery. Here we assume that coordinators of a cluster are assigned to vector entries
and that the coordinators of a cluster know each other. To satisfy these re-
quirements we choose a decentralized and fault-tolerant cluster-management
protocol [GKPT05a] which can map a process to a unique identifier in the cct-
vector clock in a decentralized way and can inform all processes in CoreC about
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this mapping.

3.3.1 Protocol description

The first of the two layers uses PrCast in order to multicast events inside the
cluster (cf. pseudo-code description Algorithm 3.1). The second layer, the
causality layer, implements the optimistic causal delivery service. The causal
delivery protocol is inspired by the protocol by Ahamad et. al. [ANB+95] and is
adapted and enhanced to provide the optimistic delivery service of the cluster
consistency model and the recovery procedure for events that may be missed
due to PrCast.

Each process in a cluster interested in observing events in optimistic causal
order (which is always true for a coordinator), maintains a queue of events
denoted by HC

p . For any arriving event e one can determine from TC
p and the

event’s timestamp te whether there exist any events which (i) causally precede
e, (ii) have not been delivered, and (iii) could still be deliverable according to
the optimistic causal order property. More precisely we define this set of not
yet delivered deliverable events as

to deliver before(e) = {e′ | te′ < te ∧ ¬(te′ < TC
p )}

and their event ids, which can be used for recovery, can be calculated as follows

to deliver before ids(e) = {〈i, j〉 | (∀i 6= index (e) . TC
p [i] < j ≤ te[i])

∨ (i = index (e) ∧ TC
p [i] < j < te[i])}.

If there exist any such events, e will be enqueued in HC
p until those events

have been delivered or e is about to become obsolete at which point e will be
delivered. (prior to that process p may “pull” missing events —see below).
Otherwise, p delivers e to the application.

When a process p delivers an event e referring to cluster C, the cct-vector
clock clockC

p is updated by setting ∀i TC
p [i] = max(te[i], TC

p [i]). Process p also
checks whether any events in Hp or recovered events now can be dequeued
and delivered. Before a coordinator p in CoreC , owning the jth vector entry,
multicasts an event it updates clockC

p by incrementing seqC
p by one. The event

is then stamped with a vector timestamp t such that t[i] = T p
C [i] for i 6= j and

t[j] = seqC
p .

Since PrCast delivers events with high probability, a process may need to
recover some events. The recovery procedure, which is invoked when an event
e in Hp is close to become obsolete, sends recovery messages for the missing
events that precede e. The time before e becomes obsolete depends the amount
of time since the start of the dissemination of e, and is assumed to be larger
than the duration of a PrCast (which is estimated by the number of hops that
an event needs to reach all destinations with w.h.p.) and the time it takes to
send a recovery message and receive an acknowledgement. At the time e ∈ Hp

becomes obsolete, p delivers all recovered events and events in Hp that causally
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precede e and e in their causal order. A simple recovery method is to contact
the sender of the missing event. For this purpose the sender has a recovery
buffer which stores events until no more recovery messages are expected (this is
e.g. the case if ∀i te[i] < TC

p [i]). Below we will present and analyze a another
recovery method that enhances the throughput and the fault-tolerance.

3.3.2 Properties of the protocol

The PrCast protocol provides a delivery service that guarantees that an event
will reach all its destinations with high probability, i.e. PrCast can achieve high
message stability. When an event needs recovery, the number of processes that
did not receive the event is expected to be low. Thus a process multicasting an
event is expected to receive a low number of recovery messages. If there are no
process, link or timing failures, reliable point to point communication succeeds
in recovering all missing events, and thus provides causal order without any
message loss. The following lemma is straightforward, following the analysis
in [ANB+95].

Lemma 3.3.1 An execution of the two-layer protocol guarantees causal delivery
of all events disseminated to a cluster if neither processes nor links are slow or
fail.

3.3.3 Event recovery, fault-tolerance and throughput

The throughput and fault-tolerance of the protocol can be increased by intro-
ducing redundancy in the recovery protocol. All processes could be required to
keep a history of some of the observed events, so that a process only needs to
contact a fixed number of other processes to recover an event. Further, such
redundancy could help the recovery of a failed process. As it is desirable to
bound the size of this buffer we analyze the recovery buffer size and number of
processes to contact such that the recovery succeeds with high probability.

Following [Kol03], we describe a model suitable to determine the probability
for availability of events that are deliverable and may need recovery in an ar-
bitrary system consisting of a cluster C of n processes that communicate using
the Two-Layer protocol. Let C denote this system and T denote the time deter-
mined by the number of rounds an event stays at most in C. Note the similarity
of the buffer system to a single-server queueing system, where new events are
admitted to the queue as a random process. However, unlike common queueing
systems, the service time (time needed for all processes in C to get the event
using the layered protocol) in this model depends on the arrival times of events.
The service time is such that every event stays at least as long in the queue
as it needs to stay in the buffer of C in order to guarantee delivery/recovery
(i.e. whether the queue is stable is not an issue here). Below we estimate the
probability that the length of the queue exceeds the choice of the length for the
recovery buffer of C.
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Algorithm 3.1 Two-Layer protocol for causal cluster consistency.
VAR

Hp: set of received events that can not be delivered yet
R: set of recovered events that can not be delivered yet
B: fixed size recovery buffer with FIFO replacement.
seqC

p : sequence number of the last event created by a process owning
the identifier p in CoreC .

T C
p : vector timestamp indicating the causal present for p.

On process p in CoreC creates the event e
seqC

p := seqC
p + 1; te := T C

p ; te[p] := seqC
p /* Create timestamp te */

PrCast(〈e, te〉)
Insert e into recovery buffer B

On process p receives 〈e, te〉
Insert e into recovery buffer B
if e can be delivered then

deliver(e)
for all e′ ∈ Hp ∪R that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
delay(e, time to terminate)

On timeout(e, time to terminate)
for all eid ∈ to deliver before ids(e) not in Hp∪R and eid not already under recovery

send(〈RECOVER, eid〉) to source(eid) or to k arbitrary processes in cluster
delay(e, time to recover)

On timeout(e, time to recover)
for all e′ ∈ to deliver before(e) ∩ (Hp ∪R) that can be delivered

deliver(e′)
deliver(e)
for all e′ ∈ Hp that can be delivered

deliver(e′)
On process p receives 〈RECOVER, eid〉 from process q

if p has e with identifier eid in its buffer then
respond( 〈ACKRECOVER, e, te〉 ) to process q

On process p receives 〈ACKRECOVER, e, te〉
Insert e into recovery buffer
if e can be delivered then

deliver(e)
for all e′ ∈ R ∪Hp that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
R := R ∪ {e}

On deliver(e)
∀i T C

p [i] := max(te[i], T
C
p [i]) /* Update T C

p */
Remove e from R and Hp

Deliver e to the application
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If ai denotes the arrival time of an event ei, the “server” processes each event
at time si = ai +T . Observe that if the length of the buffer in C is greater than
the maximum length of the queue within the time interval [ai, si] then C can
safely deliver ei.

Consider [ta, ts] denoting an interval of length T and the random variable
Xi,j denoting the event that at time ta + i process j inserts a new event
in the system. Further, assume that all Xi,j occur independently, and that
Pr[Xi,j = 1] = p and Pr[Xi,j = 0] = 1− p. The number of admitted events in
the system can be represented by the random variable X :=

∑n
j=1

∑T
i=1 Xi,j ,

hence the random process describing the arrival rate of new events is a binomial
distribution and the expected number of events in the queue in an arbitrary
time interval [ta, ts] equals

E[X] = npT.

Clearly, the length of the recovery buffer must be at least as large as E[X], or
we are expected to encounter a large number of events that cannot be recovered.

Now, using the Chernoff bound [Kol03, MR95], we bound the buffer size so
that the probability of an event that needs recovery not to be present in the
recovery buffer of any arbitrary process becomes low.

Theorem 3.3.1 Let e be an event admitted to a system C executing the two-
layered protocol, where each event is required to stay in C for T rounds. Each of
the n processes in the system admits a new event to C in a round with probability
p. Then C can guarantee the availability of e in the recovery buffer of an arbitrary
process with probability strictly greater than 1− (

e
4

)npT if the size of the buffer
is chosen greater than or equal to 2npT .

Proof: Following the Chernoff bound for binomial distributions, for any δ > 0

it is the case that Pr[X > (1 + δ)npT ] <
(

eδ

(1+δ)δ+1

)npT

. By choosing δ = 1,
the result follows. ¤

To estimate T , we can use the estimated duration of a PrCast, e.g. as
in [Kol03]. Let PrCastTime denote this time. An event e is likely to be needed
in C for (i) PrCastTime rounds (to be delivered to all processes with high prob-
ability); (ii) plus PrCastTime rounds, if missed, to be detected as missing by
the reception of a causally related event (note that this is relevant under high
load, since in low loads PrCast algorithms are even more reliable); (iii) plus
the time time to terminate+ time to recover spent before and after requesting
recovery.

Further, since processes may fail, a process that needs to recover some
event(s) should contact a number of other processes to guarantee recovery with
high probability. Assume that processes fail independently with probability pf

and let Xf be the random variable denoting the number of faulty processes in
the system. Then

E[Xf ] = pfn.

By applying the Chernoff bound as in Theorem 3.3.1 we get:
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Lemma 3.3.2 If, in a system of n processes where each one may fail indepen-
dently with probability pf , we consider an arbitrary process subset of size greater
than or equal to 2npf , with probability strictly greater than 1− (

e
4

)npf there will
be at least one non-failed process in the subset.

Proof: Following the Chernoff bound for binomial distributions, for any δ > 0
it is the case that Pr[X > (1+ δ)npf ] <

(
eδ

(1+δ)δ+1

)npf

. By choosing δ = 1, the
result follows. ¤

This implies that if a process requests recovery from R = 2pfn processes
then w.h.p. there will be at least one non-faulty to reply.

Theorem 3.3.2 In a system of n processes where each one may fail indepen-
dently with probability pf ≤ k/(2n) for fixed k, an arbitrary process that needs
to recover events according to the Two-Layer protocol, will get a reply with high
probability if it requests recovery from k processes.

Proof: From Lemma 3.3.2 above we know that if a process requests recovery
from at least 2pfn processes then w.h.p. there will be at least one non-faulty
process among them, which can answer. So we choose k ≥ 2pfn, thereby for a
given k high probability guarantee holds for pf ≤ k/(2n). ¤

Note that requesting recovery only once and not propagating the recovery
messages is good because in cases of high loss due to networking problems we do
not flood the network with recovery messages. Compared to recovery by asking
the originator of an event, this method may need k times more recovery mes-
sages. However, the advantages are tolerance of failures and process departures,
as well as distributing the load of the recovery in the system.

Regarding replacement of events in the recovery buffer, the simplest option
is FIFO replacement. Another option is an aging scheme, e.g. based on the
number of hops the event has made. As shown in [Kol03], an aging scheme may
improve performance from the reliability point of view. However, to employ such
a scheme here we need to sacrifice the separation between the consistency layer
and the underlying dissemination layer to access this information. Instead, note
that using a dissemination algorithm such as the Estimated-Time-To-Terminate-
Balls-and-Bins(ETTB)-gossip algorithm [Kol03] that uses an aging method to
remove events from process buffers and guarantees very good message stability,
implies that the reliability is improved since fewer processes may need to recover
events.

3.4 Experimental evaluation

In this section we investigate the scalability of causal cluster consistency and
the reliability and throughput effects of the optimistic causality layer in the
Two-Layer protocol. We refer to a message/event as lost if it was not received
or could not be delivered without violating optimistic causal order.
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Figure 3.1: Event throughput with increasing number of cluster members.
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System and implementation

The evaluation of the Two-Layer protocol was done on 125 networked computers
at Chalmers University of Technology. The computers were Sun Ultra 10 and
Blade workstations running Solaris 9 and PC’s running Linux distributed over
a few different subnetworks of the university network. The average round-trip-
time for a 4KB IP-ping message was between 1ms and 5ms. As we did not have
exclusive access to the computers and the network, other users might potentially
have made intensive use of the network concurrently with the experiments.

The Two-Layer protocol is implemented in an object oriented, modular man-
ner in C++. The implementation of the causality layer follows the description in
Section 3.3.1 and can be used with several group communication objects within
our framework. Our PrCast is the ETTB-dissemination algorithm described
in [Kol03] together with the membership algorithm of lpbcast [EGH+01]. TCP
was used as message transport (UDP is also supported). Multi-threading allows
a process to send its gossip messages in parallel and a timeout ensures that the
communication round has approximately the same duration for all processes.

Scalability results

Our first set of experiments evaluate how the number of coordinators affects
throughput, latency and message size. In our test application a process acts
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Figure 3.4: Event latency under varying load with and without the causality
layer.

either as a coordinator, which produces a new event with probability p in each
PrCast round, or as an ordinary cluster member. The product of the number
of coordinators and p was kept constant (at 6).

To focus on the performance of the causality layer the PrCast was configured
to satisfy the goal of each event reaching 250 processes w.h.p. (the fan-out was
4 and the event termination time was 5 hops). PrCast was allowed to know all
members to avoid side effects of the membership scheme. The maximum number
of events transported in each gossip message was 20. The size of the history
buffer was 40 events, which according to [Kol03] is high enough to prevent
w.h.p. PrCast from delivering the same event twice. The duration of each
PrCast round was tuned so that all experiments had approximately the same
rate of TCP connection failures (namely 0.2%).

The Figures 3.1, 3.2 and 3.3 compares the throughput, latency and mes-
sage size of three instances of the Two-Layer protocol: the full-updater instance
where all processes act as coordinators, the 5-updater and the 25-updater in-
stances with 5 and 25 coordinators, respectively.

The causality layer used the first recovery method, described in Section 3.3.1.
The results show the impact of the size of the vector clock on the overall message
size and throughput. For the protocols using a constant number of coordinators
message sizes even decreased slightly with growing group size since the dissemi-
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Figure 3.5: Event loss under varying load with and without the causality layer.

nation distributes the load of forwarding events better then, i.e. for large groups
a smaller percentage of processes performs work on an event during the initial
gossip rounds. However, for the full updater protocol messages grow larger with
the number of coordinators which influences the observed latency and through-
put. For growing group size the protocols with a fixed number of coordina-
tors experience only a logarithmic increase in message delay and throughput
remains constant while for the full-updater protocol latency increases linearly
and throughput decreases.

Comparison of recovery schemes

Our second set of experiments study the effects of the causality layer and the
recovery schemes in the Two-Layer protocol. The Figures 3.4 and 3.5 compares
the gossip protocol and the Two-Layer protocol with and without recovery. The
recovery is done in two ways, both described in Section 3.3.3: (i) from the orig-
inator (marked “R1 recovery”) and (ii) from k arbitrary processes (marked “R4
recovery” as the recovery fan-out k was 4). The recovery buffer size follows
the analysis in Section 3.3.3, with the timeout-periods set to the number of
rounds of the PrCast. Unlike the first experiment, the number of coordina-
tors and processes was fixed to 25; instead varying values of p were used, to
study the behaviour of the causality layer under varying load. Larger p values
imply increased load in the system; at the right edge of the diagrams approx-
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Figure 3.6: Total number of attempts to recover an event under varying load.

imately n/2 new events are multicast in each round. As the load increases,
more events are reordered by the dissemination layer and message losses begin
to occur due to buffer overflows, thus putting the causality layer protocols un-
der stress. The results in Figure 3.5 show that the causality layer significantly
reduces the amount of lost (ordered) events, in particular when the number of
events disseminated in the system is high. With the recovery schemes almost
all events could be delivered in optimistic causal order. With increasing load
latency grows only slowly (cf. Figure 3.4), thus manifesting scalability. The
causality layer adds a small overhead by delaying events in order to respect the
causal order. The recovery schemes do not add much overhead with respect to
latency, while they significantly reduce the number of lost events. At higher
loads the recovery schemes even improve latency since by recovering missing
events causally subsequent events in Hp can be delivered before they time out.
Figure 3.6 shows the total number of attempts to recover missing events in the
system and Figure 3.7 shows the success rate for the recovery attempts. The
number of recovery attempts increase as the load in the system increases, when
the load is low very few events need recovery (cf. the event loss without the
causality layer in Figure 3.5). There are three likely causes for a recovery to
fail: (i) the reply arrives too late; (ii) the process(es) asked did not have the
event; and (iii) the reply or request(s) messages were lost. The unexpectedly low
success rate during low load for the R4 method could be because a PrCast may
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reach very few processes when a gossip message is lost early in the propagation
of an event. Also note that as the load is low the number of missing events and
recovery attempts is very small. However, as load and the number of recovery
attempts increase the success rate converges towards the predicted outcome.

3.5 Discussion and future work

We have proposed lightweight causal cluster consistency, a hierarchical layer-
based structure for multi-peer collaborative applications. This is a general ar-
chitecture, which can be applied on top of the standard Internet transport-layer
services, and offers a layered set of services to the applications that need them.

We also presented a two-layer protocol for causal cluster consistency run-
ning on top of decentralized probabilistic protocols supporting group commu-
nication. Our experimental study, conducted by implementing and evaluating
the proposed architecture as a two-layered protocol that uses standard Internet
transport communication, shows that the approach scales well, imposes an even
load on the system, and provides high-probability reliability guarantees.

Future work includes complementing this service architecture with other
consistency models such as total order delivery with respect to objects. Object
ownership and caching are other topics that are worth studying.
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Chapter 4

Dynamic and Fault-Tolerant
Cluster Management for
Controlling Concurrency1

Anders Gidenstam Boris Koldehofe

Marina Papatriantafilou Philippas Tsigas

Abstract

Recent decentralized event-based systems have focused on providing event delivery

which scales with increasing number of processes. While the main focus of research

has been on ensuring that processes maintain only a small amount of information on

membership and routing, an important factor in achieving scalability for event-based

peer-to-peer dissemination system is the number of events disseminated at the same

time. This work presents a dynamic and fault-tolerant cluster management method

which can be used to coordinate concurrent access to resources in a peer-to-peer sys-

tem. In the context of event-based dissemination systems the cluster management

can be used to control the number of concurrently disseminated events. We present

and analyze an algorithm implementing the proposed cluster management model in a

fault-tolerant and decentralized way. The algorithm provides for each cluster a limited

set of tickets. A process which has obtained a ticket may send events corresponding to

the resources of the cluster. The algorithm guarantees that no two processes ever issue

an event corresponding to the same ticket at the same time. The cluster management

model on its own has interesting properties which can be useful for many peer-to-peer

1This is an extended version of the paper that appeared in the Proceedings of P2P 2005,
Konstanz, Germany, August 31 - September 2, 2005.
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applications.

Keywords: peer-to-peer communication, large scale group communication, middle-

ware.

4.1 Introduction

Many applications like collaborative applications rely on an event-based dis-
semination service, for instance to exchange information on the state of shared
replicated objects. For some applications there may be a large number of pro-
cesses involved. Peer-to-peer dissemination algorithms for structured and un-
structured networks have been studied to provide scalable event dissemination
for a large number of processes. A lot of work has focused on providing delivery
guarantees in the occurrence of dynamically joining and leaving processes by
maintaining a low amount of resources locally at each process.

Current peer-to-peer dissemination systems rely on a good behaviour of each
peer such that the overall number of events disseminated at the same time
remains sufficiently small. A common assumption is that the rate of all incoming
events remains constant. The reason is that there exists a limit on the amount
information which can be stored locally, and also that the amount of information
which one can send in a message per time unit is bounded by the physical
constraints of computer networks. Since often the dissemination of an event
is triggered by local decisions it is a difficult problem to control the amount
of events which are disseminated at the same time. Once this rate exceeded
the assumptions made by the dissemination system, the dissemination system
cannot provide the original guarantees.

Here we address this problem by proposing a distributed cluster manage-
ment. A cluster represents a region of interest in a peer-to-peer system, for
example it may consist of a set of resources or objects which processes would
like to access. To coordinate access to the resources, a cluster issues a finite set
of enumerated tickets. Processes which received a ticket from the cluster receive
the right to perform some action, for instance to disseminate an event corre-
sponding to a resource, or to use a particular entry of a vector clock to issue
causally ordered events [GKPT05b]. In order to prevent conflicts the cluster
management needs to ensure in a decentralized fashion that, in spite of con-
tinuously joining and leaving as well as failing processes, never two processes
perform an action corresponding to the same ticket at the same time. Moreover,
one needs to ensure liveness by providing the possibility to reclaim tickets from
processes that have crashed.

In this work we present an algorithm which can manage the cluster in the
described way. Besides proving the correctness of the algorithm, we also present
an analysis of availability of tickets depending on the failure rate and the amount
of tickets maintained by non-faulty processes.
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Structure of the paper. In Section 4.2 we describe the problem and intro-
duce notation and definitions. Then we present two algorithms implementing a
dynamic cluster management. The protocol of Section 4.3 works in the absence
of failures and illustrates the basic idea, while Section 4.4 describes and proves
a fault-tolerant membership protocol. In Section 4.5 we discuss related work on
resource management in peer-to-peer applications and in the subsequent section
we conclude with a discussion of the presented results and future work.

4.2 Notation and problem statement

Consider a peer-to-peer system supporting a large number processes (each pro-
cess is considered to be a peer) to join and leave the system dynamically. The
processes are said to form a group denoted by G = {p1, p2, . . .}. Processes in
G maintain a set of resources R = {r1, . . . rl}. We assume the set of resources
is partitioned into several disjoint clusters C1, C2, . . . with ∪iCi ⊆ R. Processes
which are interested in certain resources need to join the respective cluster and
will be informed afterwards about events corresponding to all resources main-
tained inside the cluster. A process which wishes to create events corresponding
to a resource inside a cluster need to obtain a ticket of the cluster. For a cluster
C there exists a maximum of n tickets where n is known to the processes which
joined C.

Processes which own a ticket are called coordinators of C. Let CoreC denote
the set of coordinators of C. The set of coordinators can change dynamically
over time. Throughout the paper we will use the term events when referring to
messages which were sent with respect to a ticket of the cluster.

An algorithm implementing the dynamic cluster management needs to im-
plement the following operations:

• Ordinary joining/leaving a cluster.

• Coordinator joining/leaving the core of a cluster.

Any ordinary process in G can perform a join or leave operation on C cor-
responding to the ordinary join and leave operation of the underlying multicast
primitive. With respect to cluster management we will also call these opera-
tion join and leave. An ordinarily joined process will be able to observe events
related to resources of a cluster.

In order to become a coordinator in a cluster C, i.e. to become member of
CoreC and be able to send events, a process performs an operation called cjoin.
If process p performs a cjoin operation, p becomes assigned to be the owner
of a unique ticket of C. When p performs a cleave operation it will release its
ticket and cannot send events related to resources of the cluster after that. The
tickets released by p may then be reused by any other process performing a
cjoin operation.

For correct cluster management it is essential that there are never two or
more coordinators that own the same tickets within the cluster at the same time.
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The ticket of a process that performed a cleave or has failed should eventually be
reusable for other processes. Moreover, the cluster management should perform
well even if a large number of processes concurrently perform cjoin operations.

Using a single process for cluster management is the simplest solution. How-
ever, if the cluster manager fails, then no processes can perform cjoin or cleave.
Finding a new coordinator reduces to the agreement problem.

The propagation of events is done by multicast communication. It is not
assumed that all processes of a cluster will receive an event which was mul-
ticast, nor does the multicast need to provide any ordering by itself. Any
lightweight probabilistic group communication protocol as appears in the liter-
ature [EGH+01, GKM01, Kol03] would be suitable. We refer to such protocols
as PrCast. PrCast is assumed to provide (i) that an event is delivered to all
destinations with high probability, (ii) decentralized and lightweight group mem-
bership, i.e. a process can join and leave a multicast group in a decentralized
way and processes do not need to know all members of the group.

4.3 Dynamic cluster management

In the following we present a method that allows interleaved cjoin and cleave
operations. The main idea of our approach is to make every process in the core
of the cluster the coordinator of a subset of the tickets {0 . . . n − 1}. We will
ensure that there are never two processes that simultaneously own or coordinate
the same ticket. In order to illustrate the basic idea we assume in this Section
that communication is reliable and processes do not fail. In Section 4.4 we show
how to extend the presented ideas under a realistic failure model.

We assume that tickets form a cyclic relation according to their number, i.e.
the succeeding ticket to ticket i is ticket i−1 mod n, while the preceding ticket
to ticket i is ticket i+1 mod n. Each process which becomes coordinator of the
cluster will own one ticket. Let i be the ticket owned by process p, also denoted
as ticket(p) = i. The successor of p is the closest process which can be reached
by following the chain of succeeding tickets to i. Accordingly, the predecessor of
p is the closest process which can be reached by following the chain of preceding
tickets. Moreover, we denote q the dth closest successor (predecessor) of p, if
the process q is reachable in d steps from p by following the chain of successors
(predecessors) starting at p.

In order to manage free tickets, the processes which own tickets also become
coordinator of a subset of all tickets maintained in a cluster. We define the set of
tickets which is coordinated by a process in terms of successor and predecessor.
Let p and q denote two processes owning tickets i and j respectively and let
q be the successor of p. Process p coordinates its own ticket i and all tickets
succeeding its own ticket and preceding ticket j. Let the coordinated set, Sp,
denote the set of tickets coordinated by p. Formally, we write

Sp = { l | l = i− k mod n, 0 ≤ k <

min{m | j = i−m mod n, m > 0}}.
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Figure 4.1: Illustration on how processes maintain and coordinate tickets of a
cluster. An arrow from process pi to a ticket indicates that pi is the respective
coordinator.

Figure 4.1 gives an example of how processes maintain and coordinate tickets,
e.g. p2 owns ticket 4 and coordinates the tickets {2, 3}.

Lemma 4.3.1 Let C denote a cluster with CoreC 6= ∅ and no two processes
own the same tickets. Then,

1. for p, q ∈ CoreC and p 6= q ⇒ Sp ∩ Sq = ∅,
2. ∪p∈CoreC

Sp = {0, . . . , n− 1}.

Proof: The lemma follows immediately from the definition of the coordinated
set of a process. ¤

Algorithm 4.1, continued in Algorithm 4.2, presents a decentralized solution
which can coordinate the tickets of a cluster if no failures occur. The algorithm
ensures that no two processes coordinate the same tickets at the same time; the
key to achieve this is by preserving the successor/predecessor relation between
coordinators. A process p which wishes to become coordinator in the cluster
selects an arbitrary coordinator. To enforce a good load balance of requests to
coordinators the selection by p could take the coordinator of a ticket chosen
uniformly at random from the set of available tickets (this can be known by
contacting any coordinator in the cluster). Let q be the selected coordinator
then p sends a cjoin message to q. Before responding to p’s request, q will
first serve all previous cjoin and cleave operations it received earlier by other
processes. In this way interleaving cjoin and cleave requests with respect to
the same coordinator become serialized. If q has decided to perform a cleave
operation or does not have any available tickets it will reply negatively to p.
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Algorithm 4.1 Cluster management in the absence of failures, part I.
VAR

Cviewp: vector of processes
ImmedSuccp: immediate successor of process p
ImmedPredp: immediate predecessor of process p
statep: state variable
ticketp: the ticket owned by process p

Message types:

CJOIN, CLEAVE, ACKJOIN, ACKSUCC, ACKCLEAVE, REJECT

Initp:

ticketp := ⊥
statep := joining
Send 〈CJOIN, p〉 to a known coordinator in CoreC .

Initialization of variables when cjoin accepted

On process p receives 〈ACKCJOIN, i, j,Cview〉 from process q
Cviewp := Cview
p becomes the coordinator for all tickets from i down to j + 1
ticketp := i
ImmedSuccp := Cview[j]
ImmedPredp := q
Send 〈NEWSUCC〉 to Cview[j]

Successor acknowledged

On process p receives 〈ACKSUCC〉 from process q
statep := coordinator
ImmedSuccp := q

Receiving a cjoin request

On process p being coordinator of tickets i down to j + 1 receives 〈CJOIN〉 from process q
if statep 6= coordinator then

Send 〈REJECT〉 to q
else

Process all previously received CJOIN and CLEAVE requests
if |Sp| > 1 then

Select ticket t ∈ Sp \ {i}.
Cview[t] := q
ImmedSuccp := q
Send 〈ACKCJOIN, t, j, Cview〉 to q

else
Send 〈REJECT〉 to q

A new predecessor

On process p being coordinator of tickets i down to j + 1 receives 〈NEWSUCC〉 from q
if statep = leaving then

Send 〈CLEAVE, Cview[j]〉 to q
else

Send 〈ACKSUCC〉 to q
ImmedPredp := q
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Algorithm 4.2 Cluster management in the absence of failures, part II.
Leaving the cluster

On process p being coordinator of tickets i down to j + 1 decides to leave the cluster
statep := leaving
Serve all previously received cjoin and cleave requests
Send 〈CLEAVE, Cview[j]〉 to ImmedPredp

Receiving a cleave request

On process p being coordinator of tickets i down to j + 1 receives 〈CLEAVE, r〉 from q
if q = ImmedSuccp and p is not serving any cjoin and statep 6= leaving then

Send 〈ACKCLEAVE, q〉
Send 〈NEWSUCC, r〉
ImmedSuccp := r

Receiving a cleave acknowledgment

On process p being coordinator of tickets i down to j + 1 receives 〈ACKLEAVE, p〉 from q
if statep = leaving then

statep := not a coordinator
ticketp := ⊥

If q is ready to serve the cjoin request by p, it will assign a ticket t ∈ Sq

to p (possibly reflecting the random choice when determining q as a suitable
coordinator). Let r be q’s successor. Process q will send a message ACKCJOIN
to p with information about t and r to p and will select p as its new successor.

When p receives the message ACKCJOIN, p will select q as its predecessor
and r as its new successor. In order to allow process r to leave the cluster
and maintain its predecessor information correctly, p must, before being able
to perform as a coordinator, send a message NEWSUCC to process r. If r is
not intending to leave the cluster, it will reply by sending an acknowledgement
ACKSUCC to p and update its predecessor to be p. Process p can then perform
as a coordinator of the cluster.

In the case a process r intends to leave the cluster it first processes all
previously received cjoin and cleave requests and sends afterwards a CLEAVE
message including information of the successor of r, say s, to its predecessor,
say q. If r receives afterwards from another process p a message NEWSUCC it
will again sent a message CLEAVE to p. Process r only leaves the cluster after
it has received a message ACKCLEAVE.

A process p serves a cleave message by r only if r is the current successor
of p. In this case p will sent a message ACKCLEAVE to r. Thereafter p sets
s as its new successor and sends a message NEWSUCC to s. Note that p
may have to subsequently serve CLEAVE messages from its new successor until
finally receiving a message ACKSUCC from a successor. However, after each
ACKCLEAVE a process coordinates a larger amount of tickets and hence the
number of subsequent NEWSUCC messages before a process can perform as a
coordinator is bounded.

Once a process may perform as a coordinator it also PrCasts that it became a
coordinator in CoreC and that it owns ticket t. Note that the PrCast operation
is only of relevance to inform other processes about p being a coordinator, but
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it is not necessary to prevent any pair of distinct processes from maintaining
the same ticket.

In order to verify correctness of the protocol as stated in Theorem 4.3.1,
recall that according to Lemma 4.3.1 correctly preserving the relation among
successors and predecessors, suffices to guarantee unique assignment of processes
to tickets. This is shown in Lemma 4.3.2.

Lemma 4.3.2 Let q be a coordinator in CoreC with successor r, serving a cjoin
operation of p. Then

1. any interleaving cjoin operation will take effect earliest after processes p
and q successfully updated their successor and predecessor,

2. an interleaving cleave operation of r will successfully be managed at p and
therefore preserve the predecessor successor relation of CoreC correctly.

Theorem 4.3.1 Let Σ := σ1, . . . , σm denote a sequence of potentially inter-
leaved operations on a cluster C where σi corresponds to a cleave or cjoin op-
eration. If Σ maintains CoreC to include at least one process the algorithm
guarantees for any p, q ∈ CoreC

1. unless p = q, Sp ∩ Sq = ∅;
2. unless p = q, p and q maintain different tickets.

4.4 Supporting link and process failures

In the following we present an algorithm which extends the previous framework
of Section 4.3 to deal with link and process failures. It is assumed that processes
fail by stopping, we do not consider Byzantine faults. Links may be slow or
failing. Communication between pairs of processes is connection oriented. Let δ
denote the maximum tolerated message delay and let p and q denote processes.
Connection oriented communication guarantees: if p sends a message, M , to
q, p expects to receive a status about M not later than time δ. If status of
M is OK then q has received M not later than time δ. Otherwise p has no
knowledge whether q received the message or not; we say then that p weakly
detects q as faulty. Since the algorithm works in rounds, we also assume that
processes have clocks which maintain approximately the same speed. Let T
denote a time period larger than the maximum tolerated message delay. If m
processes periodically with period T send messages to p , then p will receive
m− ε < m′ < m + ε messages during any time interval of length T which starts
after p has received the messages sent in the previous period by the m sources,
when none of the m processes failed.

The algorithm performs in rounds, where the time between two consecutive
rounds is assumed to be long enough to host a PrCast, i.e. to inform members
of the cluster C about a successful cjoin operation (if any has happened). The
fault-tolerance of the algorithm is controlled by the parameter k. In a round
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Algorithm 4.3 Decentralized and fault-tolerant cluster management, part I.
VAR

Lp: set consisting of 2k + 1 predecessors p received from its immediate prede-
cessor
Rp: set consisting of p and 2k predecessors successfully sent to its immediate
successor
ALIVEp: set of processes which p received an ALIVE message from during a round
Cviewp: vector of processes
ImmedSuccp: immediate successor of p
ImmedPredp: immediate predecessor of p
TempRoundsp: indicates the number of rounds for which a process is not sending UPDATE
messages
statep: state variable
ticketp: the ticket owned by process p
Pexclude: probability to start exclusion algorithm after weakly detecting a faulty
successor

Message types:

CJOIN, ALIVE, UPDATE, ACKJOIN, EXCLUDE, REQCOORD, ACKEXCLUDE

Initp:

ticketp := ⊥
statep := joining
Send 〈CJOIN, p〉 to a known coordinator in CoreC .

Main loop of the coordinator algorithm

Do in every round (duration longer than PrCast) while ticketp = coordinator
if |ALIVEp ∩ Lp| < k + 1 then

statep := disconnected
exit loop

Send 〈ALIVE, p〉 to 2k + 1 closest successors in Cview.
if TempRoundsp = 0 then

R := {r ∈ Lp | r is among the 2k closest predecessors of p} ∪ p
STATUS := Send 〈UPDATE, R〉 to ImmedSuccp

if STATUS is OK then
Rp := R

else
Run exclusion algorithm with probability Pexclude

else
TempRoundsp := TempRoundsp − 1
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Algorithm 4.4 Decentralized and fault-tolerant cluster management, part II.
Initialisation of variables when cjoin succeeds

On process p receives 〈ACKCJOIN, L, i, j,Cview〉 from q
Cviewp := Cview
Lp := L
Rp := ∅
process p becomes the coordinator for all tickets i down to j + 1
ticketp := i
ImmedSuccp := Cview[j]
ImmedPredp := q
TempRoundsp := 0
Send 〈ALIVE, p〉 to 2k + 1 closest successors in Cviewp.

Handling of UPDATE messages

On process p receiving 〈UPDATE, R〉
Lp := R

Receiving a cjoin request

On process p being coordinator of tickets i down to j + 1 receives 〈CJOIN〉 from q
if (|Sp| > 1) ∧ (TempRoundsp = 0) then

Select ticket t ∈ Sp.
Cview[t] := q
ImmedSuccp := q
R := {r ∈ Lp | r is among the 2k closest predecessors of p} ∪ p
STATUS := Send 〈ACKCJOIN, R, t, j, Cview〉
if STATUS is OK then

Rp := R
else

Run exclusion algorithm with probability Pexclude
else

Send 〈REJECT〉 to q
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Algorithm 4.5 Decentralized and fault-tolerant cluster management, the ex-
clusion algorithm.
Do

STATUS := FALSE
while (p 6= succ(ImmedSucc)) ∧ (STATUS is FALSE) do

ImmedSucc := succ(ImmedSucc) {Finds the next possible successor from Cview}
STATUS := Send〈EXCLUDE, p〉 to ImmedSucc

if (STATUS is True) ∧ (p receives 〈ACKEXCLUDE, Lq〉 from q) then
Epq := all tickets succeeding ticket(p) and preceding ticket(q)
Send〈REQCOORD, Epq〉 to all processes in Lq ∩Rp

Wait for time 2δ for replies of type ACKCOORD
if p receives ≥ k + 1 replies of type ACKCOORD then
{Do not send UPDATE messages while some excluded processes may still be alive}
TempRoundsp := dist(p, q)− 1

else
statep := disconnected
exit loop

else
statep := disconnected
exit loop

On q receives 〈EXCLUDE, p〉
Reply〈ACKEXCLUDE, Lq〉

On r receives < REQCOORD, Epq >
if r 6∈ Epq then

Send 〈ACKCOORD〉 to p
Remove processes in Epq from Cview
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of the algorithm, a process can tolerate in its 2k + 1 neighbourhood up to k
process or communication failures. The algorithm is described in pseudocode
(cf. Algorithm 4.3, Algorithm 4.4, and Algorithm 4.5), and below we present
the ideas informally. During a round the algorithm maintains the following two
invariants:

1. Any non-faulty process p in CoreC which does not perform a cleave oper-
ation remains in CoreC as long as p knows that at least k +1 of its 2k +1
closest predecessors have not experienced any process or link failures.

2. Failed processes will eventually be excluded from CoreC and processes
which perform cjoin subsequently may reuse the respective tickets.

The first invariant is achieved by the processes in CoreC sending ALIVE
messages to their 2k + 1 closest successors in each round. A process that re-
ceives less than k + 1 ALIVE messages during a round thinks that it is consid-
ered as failed and immediately stops being a coordinator and leaves CoreC (cf.
Algorithm 4.3 and Figure 4.2(I)-(II)).

In order to manage the exclusion scheme (cf. Algorithm 4.4, 4.5 and Fig-
ure 4.2(III)), a process p maintains two sets denoted by Lp and Rp. The set
Lp is used to store p’s “knowledge” of its 2k + 1 predecessors (this information
is received from its immediate predecessor), while Rp contains the information
in p’s last successful UPDATE message to p’s immediate successor containing
the 2k closest predecessors of p and p itself. Both sets are needed to determine
whether a range of coordinators can be excluded. When p joins CoreC , Lp is
initialized by the coordinator performing the cjoin operation for p. The set
Rp is initially empty. Each process also maintains an array denoted by Cviewp

which is p’s local view on the set of coordinators in CoreC , i.e. if Cviewp[i] = q
holds, then p assumes q to be the coordinator owning ticket i .

In each round p proceeds if it has received, during the last round, at least
k + 1 ALIVE messages from processes in Lp, otherwise p thinks that it is
considered as failed (cf. below for this case). If p also successfully received an
UPDATE message from its direct predecessor proposing a new set L′p, which
includes 2k + 1 predecessors of p, then p sets Lp = L′p.

If p may proceed, it creates 2k + 1 ALIVE messages and sends them to the
2k + 1 closest successors known from Cviewp. Moreover, it sends an UPDATE
message to its direct successor containing a set denoted R′p. The set R′p contains
the 2k closest predecessors in Lp and p itself. If p’s transmission of the message
UPDATE(R′p) to its direct successor is successful, then p will set Rp = R′p.

Assume a process weakly detects its successor r to be faulty, for instance
because it could not establish a connection to r for some time. In order to
release the tickets owned and coordinated by r, which is potentially faulty, p
will try to contact the next closest successor in Cviewp that is reachable, i.e.
not detected as weakly faulty. Let q be the next closest successor reachable by
p then q will reply by sending Lq. Process p will request from all processes in
Rp ∩ Lq to be the new coordinator of all tickets succeeding p and preceding
q denoted by Epq. Only if p receives k + 1 acknowledgement messages from
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3.REQCOORD({e})

4.ACKCOORD
Ld = {a,b,c}
Rd = {b,c,d}

Figure 4.2: Example of the fault-tolerant cluster management algorithm with
k = 1 focusing on the process d. (I) and (II) UPDATE messages and ALIVE
messages under normal operation. (III) Message exchanges during an exclusion
of d’s immediate successor e.

destinations in Rp ∩ Lq, p becomes the temporary coordinator of the tickets,
otherwise p thinks it is considered as failed.

While being temporary coordinator, p behaves like an ordinary coordinator,
however it does not attempt to change Lq by sending an UPDATE message and
it does not serve cjoin requests. All processes in Epq which neither have failed
nor think they are considered to have failed are said to be alive. Once, there
does not exist any alive processes in Epq, p behaves like an ordinary coordinator
again. Note that the time for a process remaining a temporary coordinator is
bounded by at most the distance between p’s and q’s tickets since in every round
the closest alive process in Epq is guaranteed to think it is considered to have
failed at the end of the round.

Processes which are requested to acknowledge an exclusion interval Epq only
acknowledge if their ticket is not contained in Epq. Processes which acknowl-
edged the exclusion of a process will remove processes in Epq from Cview and
prevent any updates of tickets corresponding to Epq for dist(p, q) rounds.
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4.4.1 Correctness

In order to prove correctness of the membership algorithm of Section 4.4, we
need to show that even in the occurrence of failures (i) two processes will never
create conflicting events and (ii) the algorithm invariants are maintained.

In Lemma 4.4.1 we first consider the behaviour of the algorithm when no
failures occur.

Lemma 4.4.1 Let neither process failures, link failures, or slow links occur
and processes always receive sufficiently many ALIVE messages. For any se-
quence of interleaving cjoin operations the membership scheme is equivalent to
the membership protocol of Section 4.3.

Proof: Both algorithms show only different behaviour if p executing Algo-
rithm 4.3 weakly detects its immediate successor r to be faulty. Since neither
processes, nor links do fail p must have detected r as faulty because r thinks it
has been considered to be failed. This implies that r did not receive sufficiently
many ALIVE messages or decided to leave the cluster, which is a contradiction
to our assumption. ¤

The critical case to analyze is after process p initiated the exclusion of Epq.
Lemma 4.4.2 states that during a round the closest successor in Epq will fail.

Lemma 4.4.2 Let Epq denote the set of processes to be excluded where p coor-
dinates the exclusion and q is the new successor of p. Further, let A denote the
set of processes which received sufficiently many ALIVE messages in the current
round. Let r denote the closest process in Epq which is still alive. Then

A ∩ (Lr − Epq −Rp) = ∅.
Proof: We can associate the passing of an UPDATE message with a token. We
say process q received a token from p if there is a chain of consecutive UPDATE
messages originating in p and ending in q. We define a relation ≺ where p ≺ q
if q has received a token from p when it was created (i.e. the time it performed
the cjoin operation), while p 6≺ q if q did not receive a token from p at the time
it was created.
Consider case p ≺ r: In this case Lr − Epq − Rp is either empty or it contains
destinations which where in a previous Cview of p. However, when p successfully
updated Rp, the respective destinations were guaranteed to be excluded by the
predecessors of p. Hence, this case yields A ∩ (Lr − Epq −Rp) = ∅
Let p 6≺ r: Any token originated by p and received by q must have been received
by r. In particular if Cview of q was influenced by p, also r must have received
influence by p. Then we can reason the same as before.
The difficult case remains where q did not receive any influence from p. We
define for two processes p′ and q′, p′ to be the parent of q′ if p′ coordinated
q′ to enter the cluster. Further, we define ancestor by the transitive closure of
the parent relation. If q did not receive any token from p, but share a common
influence, then q must have received a token from an ancestor of p. Let s denote
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the ancestor of p which succeeded last in sending a token to q.
Case r received the respective token: If r received the respective token, then it
shares the same influence as q. Every consecutive token which origins from set
Epq, has no impact on A ∩ (Lr − Epq − Rp). However, every token originating
outside Epq by transitivity will affect Lp once p has joined the cluster. Hence,
no vertices in Lr − Epq −Rp are alive after p determined its set Rp.
Case r did not receive the respective token: There must be an ancestor which
received the respective token. If there was not we would conclude Epq = ∅.
Then again p on its creation would share all influence by s on the ancestor of r
and by transitivity to r itself. Hence, again all tokens which did not influence p
originate from the set Epq. Therefore no processes in Lr − Epq − Rp are alive,
once p has updated Rp. ¤

Lemma 4.4.2 immediately implies Corollary 4.4.1 which states how long a
process p needs to be temporary coordinator until at least i alive processes in
Epq have failed.

Corollary 4.4.1 The ith successor of p in Epq will fail latest i rounds after p
was acknowledged.

Proof: The immediate successor r of p clearly fails because all ALIVE messages
r can expect according to Lemma 4.4.2 are from processes inside Rp (suppose
p maintains a copy of send Lp) and at most k processes did not acknowledge p.
Assume now that until round i−1 the closest i−1 successors have failed. Then
in round i the only candidates for sending ALIVE messages are in Li. However,
there are at most k candidates which did not acknowledge the exclusion of the
ith successor. ¤

Theorem 4.4.1 Algorithm 4.3 guarantees that two processes never have com-
mon tickets they either own or coordinate.

Proof: Lemma 4.4.1 shows that only exclusion could cause any such conflicts.
Assume that during an execution two alive processes r and s, are two processes
coordinating common tickets. This implies that one process, say r, failed to be
excluded, while s was inserted. Let p be the process which failed to exclude r
and inserted s.

After p initiated the exclusion of Epq with r, s ∈ Epq, p switches state to become
temporary coordinator for dist(p, q) rounds. During this time p could not have
inserted s. However, when p switches state to become active coordinator and
inserts s, Corollary 4.4.1 guarantees that r by that time thinks it is considered
to have failed, contradicting that both r, and s were active. ¤

4.4.2 Performance and liveness properties

Message overhead. Note that the duration of a round is assumed to be
longer than the time of a PrCast. PrCast is used to inform all processes which
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joined a cluster about an event regarding the resources of the cluster. The over-
head which is induced by the membership protocol corresponds to the number
of sent ALIVE messages. In each round a process sends and receives at most
2k + 1 messages. Hence, the cluster management protocol can be considered
as lightweight, i.e. it only adds a low number of additional messages while
performing in combination with an application using the cluster management
protocol. In addition every successful ticket acquisition is followed by a PrCast
which involves all processes which joined the cluster.

Availability. An interesting performance measure is how well the algorithm
manages to grant new processes access to tickets in the occurrence of failures
and dependent on the amount of tickets maintained by non-faulty processes.
Let α denote the fraction of tickets taken by non-faulty processes. Moreover, let
pf denote the probability for a process to fail in a round. Whenever a process
q fails, the predecessor, say p, is trying to reclaim the tickets maintained by q.
While running the exclusion algorithm p performs as a temporary coordinator
and does not release any tickets.

Observe that CoreC consists of the processes which have not been excluded
and processes which perform correctly, i.e. we know |CoreC | ≥ αn. Since there
exists at most n tickets the expected number of tickets maintained by each
coordinator of CoreC is smaller or equal to 1/α. Hence, the time to reclaim
tickets from a failing process is expected to take time less or equal to 1/α.

Assume that (i) α remains constant, and (ii) the exclusion algorithm needs
1/α rounds. Then the expected number of failing processes which needs to be
excluded is pfn because in each round αpfn processes are expected to fail. By
applying the Chernoff bound [MR95], one can bound the probability that in a
round of the algorithm’s execution there exist more than 2pfn faulty processes.
The probability is strictly smaller than (e/4)2pf n. That means a process which
attempts to acquire a ticket succeeds w.h.p. if pf < 1

2 (1− α).

4.5 Related Work

Many distributed applications like collaborative environments (e.g. [MT95, GB97,
CH93]) use event-based dissemination to interact on a distributed shared state.
In order to perform well for many processes, such systems rely on a middleware
which provides scalable group communication, supports maintenance of mem-
bership information according to processes interest as well as fast dissemination
of events in the system.

Recent approaches for information dissemination use lightweight probabilis-
tic group communication protocols [BHO+99, EGH+01, GKM01, Kol03, PRMK03,
BEG04]. These protocols allow groups to scale to many processes by providing
reliability expressed with high probability. In [PRMK03] it is shown that prob-
abilistic group communication protocols can perform well also in the context of
collaborative environments. However, to guarantee a delivery with high prob-
ability one needs a control mechanism for the number of concurrently dissem-
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inated events as achieved by the cluster management protocol. In [GKPT05b]
we show how the cluster management protocol can be used to implement such
a control mechanism which also provides causal delivery of events disseminated
in the cluster.

Alternatively, recently proposed dissemination systems implement the pub-
lish/subscribe paradigm in combination with structured peer-to-peer systems
[RKCD01, ZZJ+01]. For each region of interest the protocols construct an ap-
plication level multicast tree. Also these protocols assume a maximum number
of concurrently disseminated events. Otherwise the dissemination system may
overload the source of a multicast-tree and perform unstable thereafter.

The way structured peer-to-peer systems share information in the system
(cf. e.g. [SMK+01, AGBH03, RFH+01, RD01, ZHS+04]) has been of relevance
and inspiration to this work. Note, however, that uniform hashing, as used
in many peer-to-peer systems, is not suitable to solve the cluster management
problem since the number of processes is expected to be larger than the number
of available tickets in a cluster. Even in the situation of network partitioning
the cluster management needs to ensure that no two processes will create an
event with respect to the same ticket.

One may notice some similarity between the problem in this paper and
the l-exclusion problem [ADHK97, ADG+94]. However, to the best of our
knowledge, the solutions to the l-exclusion problem do not satisfy the cluster
management problem requirements. Nevertheless, the solution to the cluster
management problem proposed here could also serve as solution basis to the
l-exclusion problem.

4.6 Discussion and future work

This paper presented and analyzed a solution for a dynamic and fault-tolerant
cluster management for event-based peer-to-peer dissemination systems. Since
the protocol guarantees that never two processes perform some action corre-
sponding to the same ticket of a cluster, the protocol is suitable for several
coordination tasks, such as resource management, controlling the number of
concurrently disseminated events, as well as consistency management for repli-
cated distributed objects. The cost of combining the presented solution with
an application is low since the duration of a round is longer than the time of a
multicast and in each round only a low number of messages are sent. Moreover
we have shown how the protocol guarantees access to tickets in spite of failing
processes.

Current and future work deals with integrating the cluster management with
existing peer-to-peer dissemination algorithms in order to increase reliability
as well as to achieve decentralized ordering of messages by maintaining small
distributed vector timestamps.
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Efficient and Reliable
Lock-Free Memory
Reclamation Based on
Reference Counting1

Anders Gidenstam Marina Papatriantafilou

H̊akan Sundell Philippas Tsigas

Abstract

We present an efficient and practical lock-free implementation of a memory recla-

mation scheme based on reference counting, aimed for use with arbitrary lock-free

dynamic data structures. The algorithm guarantees the safety of local as well as

global references, supports arbitrary memory reuse, uses atomic primitives that are

available in modern computer systems, and provides an upper bound on the memory

prevented for reuse. To the best of our knowledge, this is the first lock-free algorithm

that provides all of these properties. Experimental results indicate significant perfor-

mance improvements for lock-free algorithms of dynamic data structures that require

strong garbage collection support.

Keywords: reference counting, memory reclamation, garbage collection, lock-free,

shared memory.

1This is an extended version of the paper that appeared in the Proceedings of I-SPAN
2005, Las Vegas, USA, December 7-9, 2005.
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5.1 Introduction

Memory management is essential for building dynamic concurrent data struc-
tures. Concurrent algorithms for data structures and related memory manage-
ment are commonly based on mutual exclusion. However, mutual exclusion
causes blocking and can consequently incur serious problems as deadlocks, pri-
ority inversion or starvation. Researchers have addressed these problems by
introducing non-blocking synchronization algorithms, which are not based on
mutual exclusion. Lock-free algorithms are non-blocking, and guarantee that
always at least one operation can progress, independently of the actions taken
by the concurrent operations. Wait-free [Her91] algorithms are lock-free, and
guarantee that all operations can finish in a finite number of their own steps,
regardless of the actions taken by the concurrent operations. It is important
in non-blocking algorithms that the effects of the concurrent operations can
be observed by the involved processes in a consistent manner. The common
consistency requirement is called linearizability [HW90].

In this paper we are focusing on practical and efficient memory management
in the context of lock-free dynamic data structures. For an operation of an
algorithm to be lock-free, all sub-operations must be at least lock-free. Con-
sequently, lock-free dynamic data structures typically require lock-free memory
management. The memory management problem is normally divided into the
sub-problems of dynamic memory allocation and garbage collection.

Valois as well as Michael and Scott [Val95a, MS95] presented a memory
allocation scheme for fixed-sized memory segments; this scheme has to be used
in combination with the corresponding garbage collection scheme. Lock-free
memory allocation schemes for general use have been presented by Michael
[Mic04c] and Gidenstam et al. [GPT05].

Various lock-free garbage collection schemes have been presented in the lit-
erature.

Michael [Mic02b, Mic04a] proposed the hazard pointer algorithm that focuses on
local references. A similar scheme has been proposed by Herlihy et al. [HLM02];
this scheme uses unbounded tags and is based on the double-width CAS atomic
primitive, a compare-and-swap operation that can atomically update two adja-
cent memory words. This is available in some 32-bit architectures, but only in
very few of the current 64-bit architectures.

As the aforementioned schemes only guarantee the safety of local pointers
from the threads and not the safety of pointers inside dynamically allocated
nodes, they cannot support arbitrary lock-free algorithms that might require
to always being able to trust global references (i.e. pointers from within the
data structure) to objects. This constraint can be strong and restrictive, and
may force the data structure algorithms to retry traversals in the possibly large
data structures, with resulting large performance penalties that increase with
the level of concurrency.

Garbage collection schemes that are based on reference counting can guar-
antee the safety of global as well as local references to objects. Valois et
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al. [Val95a, MS95] presented a lock-free reference counting scheme that can
be implemented using available atomic primitives, though it is limited to be
used only with the corresponding algorithm for memory allocation. Detlefs et
al. [DMMS01] presented a scheme that allows also arbitrary reuse of reclaimed
memory, but it is based on double-word CAS, which is a compare-and-swap
operation that can atomically update two arbitrary memory words. This in-
struction is not available in any common modern processor architecture.

Herlihy et al. [HLMM02, MLH03] presented a modification of the previous
scheme such that it only uses single-word CAS (compare-and-swap) for the
reference counting part. However, this scheme relies on another scheme that
itself requires double-width CAS, an instruction which, as mentioned above,
can atomically update two adjacent memory words and is available only in very
few of the current 64-bit architectures.

A problem with reference counting techniques, which was identified in [MS95]
is that reference counting techniques can potentially cause a local reference
from a slow thread to block (due to the ability of creating recursive references)
arbitrarily number of nodes from being reclaimed. Consider for example a chain
of nodes that has been removed from a singly linked list in order from the front
to back where the slow thread holds a reference to the first deleted node. This
node cannot (currently) be reclaimed and would still contain a reference to the
next (subsequently) deleted node, preventing it, too, from being reclaimed and
so on.

In the context of wait-free memory management, a wait-free extension of
Valois’ reference counting scheme and memory allocator has been presented by
Sundell [Sun05, Sun04b]. Hesselink and Groote [HG98, HG01] have presented a
wait-free memory management scheme that is restricted to the specific problem
of sharing tokens.

This paper combines the strength of reference counting with the efficiency
of hazard pointers, into a general lock-free reference counting scheme, with the
aim of keeping only the advantages of the involved techniques while avoiding
the respective drawbacks. Our new garbage collection/memory reclamation
algorithm is lock-free and linearizable, is compatible with arbitrary schemes
for memory allocation, can be implemented using commonly available atomic
primitives and guarantee the safety of local as well as global references. We also
show how to bound the amount of memory that can be temporarily withheld
from reclamation by any thread.

The rest of the paper is organized as follows. In Section 5.2 we describe the
type of systems that our implementation is aiming for. Section 5.3 describes
the specifics of the problem of garbage collection we are focusing on. The
actual algorithm is described in Section 5.4. In Section 5.5 we define the precise
semantics of the operations on our implementation, and show the correctness
of our algorithm by proving the lock-free and linearizability properties as well
as proving an upper bound of the memory that can be temporarily held for
reclaiming by our algorithm. Section 5.6 presents an experimental evaluation
of the new algorithm in the context of a lock-free data structure. We conclude
the paper with Section 5.7.
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Guarantees Bounded Compatible Suffices with
the safety number of with stand- single-word
of shared unreclaimed ard memory compare-and-
references deleted nodes allocators swap

(Property 5) (Property 2) (Property 4)

New algorithm Yes Yes Yes Yes

Detlefs et al. Yes No e Yes No a

[DMMS01]

Herlihy et al. No Yes Yes No b

[HLM02]

Herlihy et al. Yes No e Yes No c

[HLMM02, MLH03]

Michael No Yes Yes Yes d

[Mic02b, Mic04a]

Valois et al. Yes No e No Yes
[Val95a, MS95]

aThe LFRC algorithm uses the double-word compare-and-swap (DCAS) atomic primitive.
bThe pass-the-buck (PTB) algorithm uses the double-width compare-and-swap atomic

primitive.
cThe SLFRC algorithm is based on the pass-the-buck (PTB) algorithm, and thus uses

double-width compare-and-swap.
dThe hazard pointer algorithm uses only atomic reads and writes.
eThese reference count-based schemes allow arbitrary long chains of deleted nodes that

recursively reference each other to be created. In addition, deleted nodes that cyclically
reference each other (i.e. cyclic garbage) will be not be reclaimed ever.

Table 5.1: Properties of different approaches to non-blocking memory manage-
ment.
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Figure 5.1: Shared memory multiprocessor system structure.

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 5.2: The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic
primitives.

5.2 System description

A typical abstraction of a shared memory multi-processor system configuration
is depicted in Figure 5.1. Each node of the system contains a processor together
with its local memory. All nodes are connected to the shared memory via an
interconnection network. A set of co-operating tasks is running on the system
performing their respective operations. Each task is sequentially executed on
one of the processors, while each processor can serve (run) many tasks via multi-
programming. The co-operating tasks, possibly running on different processors,
use shared data objects built in the shared memory to co-ordinate and commu-
nicate. Tasks synchronize their operations on the shared data objects through
sub-operations on top of a cache-coherent shared memory. The shared memory
may not though be uniformly accessible for all nodes in the system; processors
can have different access times on different parts of the memory.

The shared memory system should support atomic read and write opera-
tions of single memory words, as well as stronger atomic primitives for synchro-
nization. In this paper we use the Fetch-And-Add (FAA) and the Compare-
And-Swap (CAS) atomic primitives; see Figure 5.2 for a description. These
read-modify-write style operations are available on most common architectures
or can be easily derived from other synchronization primitives with the same or
higher consensus number [Moi97, Jay98].



100 CHAPTER 5. LOCK-FREE MEMORY RECLAMATION

5.3 Problem description

In this paper we are aiming at solving the garbage collection/memory recla-
mation problem in the context of dynamic lock-free data structures. Lock-free
data structures typically consist of a set of memory segments, called nodes that
each contain arbitrary data. These nodes are interconnected by referencing
each other in an arbitrary pattern. The references are typically implemented
by using pointers that can identify each individual node by the means of mem-
ory addresses. Each node may contain an arbitrary number of pointers, called
links, which reference other nodes. The operation to follow the referenced node
through a link is called dereferencing. Some nodes are typically always part of
the data structure, all others nodes are part of the data structure when they are
referenced by a node that itself is a part of the data structure. In a dynamic and
concurrent data structure, arbitrary nodes can continuously and concurrently be
added or removed from the data structure. As systems have limited amount of
memory, the occupied memory of these nodes needs to be dynamically allocated
and reclaimed from/to the system.

In a sequential implementation of a data structure, the memory of a node is
typically explicitly reclaimed to the system when the last reference to it has been
removed, i.e. when the node has been deleted. In a concurrent environment this
should also include possible local references to a node that any thread might
have, as the possible access to the memory of a reclaimed node might be fatal
to the correctness of the data structure and/or the whole system. The logical
unit that correctly decides about reclaiming is called the garbage collector and
should thus have the following property:

Property 5.3.1 The garbage collector should only reclaim possible garbage that
is not part of the data structure and for which future access by any thread is not
possible.

It should also always be possible to predict the maximum amount of memory
that is used by the data structure, thus adding this requirement to the garbage
collector:

Property 5.3.2 At any time, there should exist an upper bound on the number
of nodes that is not part of the data structure, but not yet reclaimed to the
system.

In real implementations of a garbage collector (GC) these properties can be
very hard to achieve, as local references to nodes might not be accessible globally
(e.g. they might be stored in processor registers). Therefore implementations of
GC’s typically need to interact with the involved threads and put restrictions on
the access to the nodes, e.g. by providing special operations for dereferencing
links and demanding that the data structure implementation explicitly calls the
garbage collector when a node has been deleted.

Moreover, as the underlying data structures of interest are lock-free and
typically also linearizable, the garbage collector also has to guarantee these
features:
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Algorithm 5.1 The Node structure used by the memory reclamation algorithm.
structure Node

mm ref: integer /* Initially 0 */
mm trace: boolean /* Initially false */
mm del: boolean /* Initially false */
... /* Arbitrary user data and links follows */
link[NR LINKS NODE]: pointer to Node /* initially NULL */

Property 5.3.3 All operations of the garbage collector for communication with
the underlying data structure implementation should be lock-free and lineariz-
able.

In order to minimize the whole system’s total amount of occupied memory
for the various data structures, we sometime would like to fulfill the following
property:

Property 5.3.4 The memory that is reclaimed by the garbage collector should
be accessible for any arbitrary future reuse; i.e. the garbage collector should be
compatible with the system’s default memory allocator.

In a concurrent environment it might frequently occur that a thread is hold-
ing a local reference to a node that has been deleted (i.e. removed from the data
structure) by some other thread. In these cases it may be very useful for the
first thread to be able to use the deleted node’s links, e.g. in search procedures
in large data structures:

Property 5.3.5 A thread that has a local reference to a node, should also be
able to dereference all of the links that are contained in that node.

The new algorithm in this paper fulfills all of these properties in addition
to the property of only using atomic primitives that are commonly available in
modern systems. Table 5.1 shows a comparison of the fulfilled properties with
previously presented lock-free garbage collection schemes. All of the schemes
fulfill properties 1 and 3, whereas only a subset of the other properties is met
by the previously presented schemes.

5.4 The new lock-free algorithm

In order to fulfill all of the requested properties in Section 5.3 as well as to
provide an efficient and practical method, our aim is to devise a reference count-
ing method which can also employ the hazard pointer (HP) scheme of Michael
[Mic02b, Mic04a]. Roughly speaking, hazard pointers are used for guaranteeing
the safety of local references and reference counts for guaranteeing the safety
of internal links in the data structure. Thus, the reference count of each node
should indicate the number of globally accessible links that reference that node.
Algorithm 5.1 describes the node structure as it is used in our algorithm. As in
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the HP scheme, each thread maintains a list of nodes that are deleted but not
yet reclaimed, and this list is scanned for possible reclamation when its length
has reached a certain threshold (i.e. THRESHOLD 2). Some of the deleted
nodes might be prevented from reclamation because of a fixed number of haz-
ard pointers, while some deleted nodes might be prevented because of a positive
reference count adherent to links. Thus, it is important to keep the number
of references to deleted nodes from links to a minimum. Before we continue
with the techniques for bounding the size of the deletion lists, we introduce
an assumption about what could be required by the lock-free data structure
algorithm:

Assumption 5.4.1 For each of the links in a deleted node that reference a
deleted node, it should be possible to replace it with a reference to an active
node, with retained semantics for any of the involved threads.

The intuition behind this assumption lays behind an observation why links
of a deleted node should be useful to dereference by a thread that has a local
reference to it. The thread with a local reference to a deleted node surely wants
to find an appropriate active node and therefore takes advantage of the links.
If the corresponding reference also adheres to a deleted node, the previous step
is repeated. From the point of view of the thread of interest, it would not make
any difference if some other thread helped with the procedure and already made
sure that the links of the deleted node all references active node. The procedure
of replacing the links of a deleted node with references to active nodes is called
clean-up.

As described earlier, besides hazard pointers, nodes in the deletion lists are
possibly prevented from reclamation by links of other deleted nodes. These
nodes might be in the same deletion list or in some other thread’s deletion
list. For this reason, all threads’ deletion lists are accessible for reading by
any thread. When the length of the deletion list reaches a certain threshold
(THRESHOLD 1) the thread performs a clean-up of all the nodes in its dele-
tion list. If all of the nodes are still prevented from reclamation, this must be due
to nodes in some other thread’s deletion list, and thus the thread tries to perform
a clean-up of all of the other threads’ deletion lists as well. As this procedure is
repeated until the length of the deletion list is below the threshold, the amount
of deleted nodes that are not yet reclaimed is bounded. The actual calculation
of THRESHOLD 1 is described in 5.5.2. The threshold THRESHOLD 2 is
set according to the HP scheme or less or equal than THRESHOLD 1.

5.4.1 Application programming interface

The following functions are defined for safe handling of the reference counted
nodes:

function DeRefLink(link:pointer to pointer to Node): pointer to Node
procedure ReleaseRef(node:pointer to Node)
function CompareAndSwapRef(link:pointer to pointer to Node, old:pointer

to Node, node:pointer to Node): boolean
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Algorithm 5.2 Reference counting algorithm: global and local variables.

/* Global variables */
HP[NR THREADS][NR INDICES]: pointer to Node;
DL Nodes[NR THREADS][THRESHOLD 1]: pointer to Node;
DL Claims[NR THREADS][THRESHOLD 1]: integer;
DL Done[NR THREADS][THRESHOLD 1]: boolean;
/* the above matrixes should be initialized to the values of
NULL, NULL, 0 respective false */

/* Local static variables */
threadId: integer; /* Unique and fixed number for each thread
between 0 and NR THREADS-1 */

dlist: integer; /* Initially ⊥ */
dcount: integer; /* Initially 0 */
DL Nexts[THRESHOLD 1]: integer;

/* Local temporary variables */
node, node1, node2, old: pointer to Node;
thread, index, new dlist, new dcount: integer;
plist: array of pointer to Node;

procedure StoreRef(link:pointer to pointer to Node, node:pointer to Node)
function NewNode:pointer to Node
procedure DeleteNode(node:pointer to Node)

The function DeRefLink safely de-references a given link, and sets a hazard
pointer to the de-referenced node, thus guaranteeing the future safety to access
the returned node. The procedure ReleaseRef should be called when a given
node will not be accessed by the current thread anymore. It will clear the
corresponding hazard pointer.

To update a link for which there might be concurrent updates to the link,
the function CompareAndSwapRef should be used, which gives result whether
the update was successful or not. The procedure will make sure that any thread
that calls DeRefLink on the link can safely do so, if the thread has a hazard
pointer reference to the node that contains the link. The requirements are that
the calling thread of CompareAndSwapRef should have a hazard pointer to the
given node that should be stored.

To update a link for which there cannot be any concurrent updates the
procedure StoreRef should be called. The procedure will make sure that any
thread that calls DeRefLink on the link can safely to so, if the thread has a hazard
pointer reference to the node that contains the link. The requirements are that
the calling thread of StoreRef should have a hazard pointer to the given node
that should be stored, and that no other thread will possibly write concurrently
to the link (otherwise CompareAndSwapRef should be invoked instead).

The function NewNode allocates a new node, sets a free hazard pointer to it
for guaranteeing the future safety for access, and then returns it. The procedure
DeleteNode should be called when a node is removed from the data structure
and which memory should be possible to reclaim for reuse. The user operation
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Algorithm 5.3 Reference counting functions, part I.
function DeRefLink(link:pointer to pointer to Node):
pointer to Node

D1 Choose index such that HP[threadId][index]=NULL
D2 while true do
D3 node := *link;
D4 HP[threadId][index] := node;
D5 if *link = node then
D6 return node;

procedure ReleaseRef(node:pointer to Node)
R1 Choose index such that HP[threadId][index]=node
R2 HP[threadId][index]:= NULL;

function CompareAndSwapRef(link:pointer to pointer to Node,
old: pointer to Node, node: pointer to Node): boolean

C1 if CAS(link,old,node) then
C2 if node 6= NULL then
C3 FAA(&node.mm ref,1);
C4 node.mm trace:=false;
C5 if old 6= NULL then FAA(&old.mm ref,-1);
C6 return true;
C7 return false;

procedure StoreRef(link:pointer to pointer to Node,
node: pointer to Node)

S1 old := *link;
S2 *link := node;
S3 if node 6= NULL then
S4 FAA(&node.mm ref,1);
S5 node.mm trace:=false;
S6 if old 6= NULL then FAA(&old.mm ref,-1);

function NewNode : pointer to Node
NN1 node := Allocate the memory of node (e.g. using malloc)
NN2 node.mm ref := 0;
NN3 node.mm del := false;
NN4 Choose index such that HP[threadId][index]=NULL
NN5 HP[threadId][index] := node;
NN6 return node;
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Algorithm 5.4 Reference counting functions, part II.
procedure DeleteNode(node:pointer to Node)
DN1 ReleaseRef(node);
DN2 node.mm del := true; node.mm trace := false;
DN3 Choose index such that DL Nodes[threadId][index]=NULL
DN4 DL Done[threadId][index]:=false;
DN5 DL Nodes[threadId][index]:=node;
DN6 DL Nexts[index]:=dlist;
DN7 dlist := index; dcount := dcount + 1;
DN8 while true do
DN9 if dcount = THRESHOLD 1 then CleanUpLocal();
DN10 if dcount ≥ THRESHOLD 2 then Scan();
DN11 if dcount = THRESHOLD 1 then CleanUpAll();
DN12 else break;

that called DeleteNode is responsible for removing all references to the deleted
node from the active nodes in the data-structure. This is similar to what is
required when using a memory allocator in a sequential data-structure. The
memory manager will not reclaim the deleted node until it is safe to do so.

In Section 5.4.4 we give an example of how these functions can be used in
the context of a lock-free queue algorithm based on linked lists.

Callbacks

The following functions are callbacks that have to be defined by the designer of
each specific data structure:

procedure CleanUpNode(node:pointer to Node)
procedure TerminateNode(node:pointer to Node, concurrent:boolean)

The procedure TerminateNode will make sure that none of the links in the
given node will have any claim on any other node. TerminateNode is called on
a deleted node when there are no claims from any other node or thread to the
node.2

The procedure CleanUpNode will make sure that all claimed references from
the links of the given node will only point to active nodes, thus removing re-
dundant passages through an arbitrary number of deleted nodes.

5.4.2 Auxiliary procedures

Auxiliary functions that are defined for internal use by the reference counting
algorithm:

procedure Scan()
procedure CleanUpLocal()

procedure CleanUpAll()

2In principle this procedure could be provided by the memory manager but in practice it
is more convenient to let the user decide the memory layout of the node records. All node
records would still be required to start with the mm ref, mm trace and mm del fields.
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Algorithm 5.5 Callback functions.
procedure TerminateNode(node:pointer to Node,concurrent:boolean)
TN1 if not concurrent then
TN2 for all x where link[x] of node is reference-counted do
TN3 StoreRef(node.link[x],NULL);
TN4 else
TN5 for all x where link[x] of node is reference-counted do
TN6 repeat node1 := node.link[x];
TN7 until CompareAndSwapRef(&node.link[x],node1,NULL);

procedure CleanUpNode(node:pointer to Node)
CN1 for all x where link[x] of node is reference-counted do

retry:
CN2 node1:=DeRefLink(&node.link[x]);
CN3 if node1 6= NULL and node1.mm del then
CN4 node2:=DeRefLink(&node1.link[x]);
CN5 CompareAndSwapRef(&node.link[x],node1,node2);
CN6 ReleaseRef(node2);
CN7 ReleaseRef(node1);
CN8 goto retry;
CN9 ReleaseRef(node1);

Algorithm 5.6 Internal functions, part I.
procedure CleanUpLocal()
CL1 index := dlist;
CL2 while index 6= ⊥ do
CL3 node:=DL Nodes[threadId][index];
CL4 CleanUpNode(node);
CL5 index := DL Nexts[index];

procedure CleanUpAll()
CA1 for thread := 0 to NR THREADS-1 do
CA2 for index := 0 to THRESHOLD 1-1 do
CA3 node:=DL Nodes[thread][index];
CA4 if node 6= NULL and not DL Done[thread][index] then
CA5 FAA(&DL Claims[thread][index],1);
CA6 if node = DL Nodes[thread][index] then
CA7 CleanUpNode(node);
CA8 FAA(&DL Claims[thread][index],-1);
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Algorithm 5.7 Internal functions, part II.
procedure Scan()
SC1 index := dlist;
SC2 while index 6= ⊥ do
SC3 node:=DL Nodes[threadId][index];
SC4 if node.mm ref = 0 then
SC5 node.mm trace := true;
SC6 if node.mm ref 6= 0 then node.mm trace := false;
SC7 index := DL Nexts[index];
SC8 plist := ∅; new dlist:=⊥; new dcount:=0;
SC9 for thread := 0 to NR THREADS-1 do
SC10 for index := 0 to NR INDICES-1 do
SC11 node := HP[thread][index];
SC12 if node 6= NULL then
SC13 plist := plist + node;
SC14 Sort and remove duplicates in array plist
SC15 while dlist 6= ⊥ do
SC16 index := dlist;
SC17 node:=DL Nodes[threadId][index];
SC18 dlist := DL Nexts[index];
SC19 if node.mm ref = 0 and node.mm trace and node 6∈ plist then
SC20 DL Nodes[threadId][index]:=NULL;
SC21 if DL Claims[threadId][index] = 0 then
SC22 TerminateNode(node,false);
SC23 Free the memory of node
SC24 continue;
SC25 TerminateNode(node,true);
SC26 DL Done[threadId][index]:=true;
SC27 DL Nodes[threadId][index]:=node;
SC28 DL Nexts[index]:=new dlist;
SC29 new dlist := index;
SC30 new dcount := new dcount + 1;
SC31 dlist := new dlist;
SC32 dcount := new dcount;
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The procedure Scan will search through all not yet reclaimed nodes deleted
by this thread and reclaim only those that does not have any matching hazard
pointer and do not have any counted references from any links inside of nodes.
The procedure CleanUpLocal will try to remove redundant claimed references
from links in deleted nodes that has been deleted by this thread. The procedure
CleanUpAll will try to remove redundant claimed references from links in deleted
nodes that has been deleted by any thread.

5.4.3 Detailed algorithm description

DeRefLink (Algorithm 5.3), first reads the pointer to a node stored in *link
at line D3. Then at line D4 it sets one of the thread’s hazard pointers to point
to the node. At line D5 it verifies that the link still points to the same node
as before. If *link still points to the node, it knows that the node is still not
yet reclaimed and that it cannot not be reclaimed until the hazard pointer now
pointing to it is released. If *link has changed since the last read, it retries.

ReleaseRef (Algorithm 5.3), removes this thread’s hazard pointer pointing
to node. Note that if the node node is deleted, has a reference count of zero
and no other hazard pointers are pointing to it, the node can now be reclaimed
by Scan (invoked by the thread that called DeleteNode on the node).

CompareAndSwapRef (Algorithm 5.3), performs a common CAS on the link
and updates the reference counts of the respective nodes accordingly. Line C4
notifies any concurrent Scan that the reference count of node has been increased.
Notice that the node node is safe to access during CompareAndSwapRef since
the thread calling CompareAndSwapRef is required to have a hazard pointer
pointing to it. At line C5 the reference count of old is decreased. The previous
reference count must have been greater than zero since *link referenced the
node old.

StoreRef (Algorithm 5.3), is valid to use only when there are no concurrent
updates of *link. After updating *link at line S2 StoreRef increases the
reference count of node at line S4, which is safe since the thread calling StoreRef
is required to have a hazard pointer to the node node. Line S5 notifies any
concurrent Scan that the reference count of node is non-zero. At line S6 the
reference count of old is decreased. The previous reference count must have
been greater than zero since *link referenced the node old.

NewNode (Algorithm 5.3), allocates memory for the new node from the
underlying memory allocator and initializes the header fields each node should
have. It also sets a hazard pointer to the node.

DeleteNode (Algorithm 5.4), marks the node node as logically deleted at
line DN2. Then at the lines DN3 to DN7 the node is inserted into this thread’s
set of deleted but not yet reclaimed nodes. By clearing DL Done at line DN4
before writing the pointer at line DN5 concurrent CleanUpAll operations can
access the node and tidy up its references.

If the number of deleted nodes in this thread’s set of deleted but not yet
reclaimed nodes is larger than or equal to THRESHOLD 2 a Scan is performed
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which will reclaim all nodes in the set that are not referenced by other nodes or
threads.

If the thread’s set of deleted but not yet reclaimed nodes is now full, that
is, it contains THRESHOLD 1 nodes, the thread will first run CleanUpLocal at
line DN9 to make sure that all of its deleted nodes only points to nodes that
were alive when CleanUpLocal started. Then it runs Scan at line DN10. If Scan
is unable to reclaim any node at all then the thread will run CleanUpAll , which
cleans up the sets of deleted nodes of all threads.

Callbacks

TerminateNode (Algorithm 5.5), should clear all links in the node node by writ-
ing NULL to the links in node. This is done by using either CompareAndSwapRef
or StoreRef depending on whether there might be concurrent updates of these
links or not.

CleanUpNode (Algorithm 5.5), should make sure that none of the links
of the node node points to nodes that were deleted before this invocation of
CleanUpNode started.

Auxiliary procedures

Scan (Algorithm 5.7), reclaims all nodes deleted by the current thread that are
not referenced by any other node or any hazard pointer. To determine which
of the deleted nodes that can safely be reclaimed Scan first sets the mm trace
bit of all deleted nodes that have reference count zero (lines SC1 to SC7). The
check at line SC6 ensures that the reference count was indeed zero when the
mm trace bit was set.

Then Scan records all active hazard pointers of all threads in plist (lines SC8
to SC14). In the lines SC15 to SC30 Scan traverses all not yet reclaimed nodes
deleted by this thread. For each of these nodes the tests at line SC19 determine
if (i) the reference count is zero, (ii) the reference count has consistently been
zero since before the hazard pointers were read (indicated by the mm trace bit
being set) and (iii) the node is not referenced by any hazard pointer. If all
three of these conditions are true, the node is not referenced and Scan checks
if there may be concurrent CleanUpAll operations working on the node at line
SC21. If there are no such CleanUpAll operations Scan uses TerminateNode to
release all references the node might contain and then reclaim the node (lines
SC22 and SC23). In case there might be concurrent CleanUpAll operations
accessing the node Scan uses the concurrent version of TerminateNode to set all
of the node’s links to NULL. By setting the DL Done flag at line SC26 before the
node is reinserted into the set of unreclaimed nodes at line SC27 later CleanUpAll
operations cannot prevent this node from being reclaimed by a subsequent Scan.

CleanUpLocal (Algorithm 5.6), traverses the thread’s list of deleted but un-
reclaimed nodes and calls CleanUpNode on each of them to make sure that their
links do not reference any nodes that were already deleted when CleanUpLocal
started.
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CleanUpAll (Algorithm 5.6), traverses the DL Nodes arrays of all threads
and try to make sure that none of the nodes it finds contains links to nodes that
were already deleted when CleanUpAll started. The tests at line CA4 prevent
CleanUpAll from needlessly interfere with Scan for nodes that have no references
left. The test at line CA6 prevents CleanUpAll from accessing a node that Scan
has already reclaimed. If the node is still present in DL Nodes[thread][index]
at line CA6 then a concurrent Scan accessing this node must be before line SC20
or be after line SC27 without having reclaimed the node.

5.4.4 Example application

The application of the new algorithm for memory management to lock-free
algorithms for dynamic data structures can be done straight forward in a similar
manner to previously presented memory management schemes. Algorithm 5.8
shows the lock-free queue algorithm by Valois et al. [Val94, MS95] as it would
be integrated with the new algorithm for memory management.

5.4.5 Algorithm extensions

For simplicity reasons, the algorithm in this paper is described with a fixed
number of threads. However, the algorithm can easily be extended for a dynamic
number of threads in a similar way as described for the HP scheme in [Mic04a].
The global matrix of hazard pointers (HP) can be turned into a linked list of
arrays. The deletion lists can also be linked into a global chain, and as the size
of the deletion lists changes, old redundant deletion lists can be safely reclaimed
by using an additional HP scheme for memory management.

5.5 Correctness proof

In this section we present the correctness proof of our algorithm. The outcome
of the correctness proof is the following theorems that state the most important
properties of our algorithm.

Theorem 5.5.1 The algorithm implements a lock-free and linearizable algo-
rithm for garbage collection.

Theorem 5.5.2 The number of deleted but not yet reclaimed nodes in the sys-
tem is bounded from above by

N2 · (k + lmax + α + 1),

where N is the number of threads in the system, k is the number of hazard
pointers per thread, lmax is the maximum number of links a node can contain
and α is the maximum number of links in live nodes that may transiently point
to a deleted node.
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Algorithm 5.8 Example of a queue algorithm using the new memory manage-
ment scheme.
structure QNode

mm ref: integer
mm trace: boolean
mm del: boolean
next: pointer to QNode
value: pointer to Value

/* Global variables */
head, tail:pointer to QNode

procedure InitQueue()
IQ1 node := NewNode();
IQ2 node.next := NULL;
IQ3 head := NULL; tail:= NULL;
IQ3 StoreRef(&head,node);
IQ4 StoreRef(&tail,node);

function Dequeue():pointer to Value
DQ1 while true do
DQ2 node1 := DeRefLink(&head);
DQ3 next := DeRefLink(&node2.next);
DQ4 if next = NULL return NULL;
DQ5 if CompareAndSwapRef(&head,node1,next) then break;
DQ6 ReleaseRef(node1); ReleaseRef(next);
DQ7 DeleteNode(node1);
DQ8 value := next.value; ReleaseRef(next);
DQ9 return value;

procedure Enqueue(value:pointer to Value)
EQ1 node := NewNode();
EQ2 node.next := NULL; node.value := value;
EQ3 old := DeRefLink(&tail); prev := old;
EQ4 repeat
EQ5 while prev.next 6= NULL do
EQ6 prev2 := DeRefLink(&prev.next);
EQ7 if old 6= prev then ReleaseRef(prev);
EQ8 prev := prev2;
EQ9 until CompareAndSwapRef(&prev.next,NULL,node);
EQ10CompareAndSwapRef(&tail,old,node);
EQ11 if old 6= prev then ReleaseRef(prev);
EQ12ReleaseRef(old); ReleaseRef(node);
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The above theorems are proved below using a series of lemmas. We first
prove that our algorithm does not reclaim memory that could still be accessed,
then we prove an upper bound on the amount of such deleted but unreclaimed
garbage there can be and last we prove that the algorithm is a linearizable and
lock-free one [HW90]. A set of definitions that will help us to structure and
shorten the proof is first described in this section. We start by defining the
sequential semantics of our operations.

Definition 5.5.1 Let Ft denote the state of the pool of free nodes at time t.
We interpret n ∈ Ft to be true when n has been freed as per line SC23 in Scan.
Any (preferably lock-free) memory allocator can be used to manage the free pool.

Let n ∈ HPt(p) denote that thread p has a verified hazard pointer set to point
to node n at time t. A verified hazard pointer is one that has been or will be
returned by a successful DeRefLink operation. The array of hazard pointers in
the implementation, the array HP, may also contain pointers temporarily set by
unsuccessful DeRefLink operations, but these are not considered as part of the
HPt(p) sets.

Let n ∈ DLt(p) denote that node n is deleted and is awaiting reclamation in
the dlist of thread p at time t.

Let Delt(n) denote that the node n is marked as logically deleted at time t.
The deletion mark is not removed until the node is returned to the free pool.

Let Links(n) denote the set of shared links (pointers) present in node n.
Let lx 7→t nx denote that the shared link lx points to node nx at time t.
Let Reft(n) denote a set containing the shared links that point to the node n

at time t. A shared link is either a global shared variable visible to the application
or a pointer variable residing inside a node. Specifically, the elements in the per
thread arrays of hazard pointers, HP, and the per thread arrays of deleted nodes,
DL Nodes, are not considered as shared links, since these are internal to the
memory management.

The operations that are of interest for linearizability are DeRefLink (DRL),
ReleaseRef (RR), NewNode (NN), DeleteNode (DN) and CompareAndSwapRef
(CASR). For the safety and correctness of the memory management the fol-
lowing additional internal operations are also of interest: TerminateNode (TN),
Scan (SCAN), CleanUpNode (CUN), CleanUpLocal (CUL), CleanUpAll (CUA).

In the following expressions which define the sequential semantics of our
operations, the syntax is S1 : O1, S2, where S1 is the conditional state before the
operation O1 and S2 is the resulting state after the operation has been performed.

DeRefLink

∃n1.l1 7→t1 n1 : DRL(l1) = n1, n1 ∈ HPt2(pcurr) (5.1)

l1 7→t1 ⊥ : DRL(l1) = ⊥, (5.2)

ReleaseRef

n ∈ HPt1(pcurr) : RR(n1), n /∈ HPt2(pcurr) (5.3)
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NewNode

∃n1.n1 ∈ Ft1 :
NN() = n1,

n1 /∈ Ft2 ∧Reft2(n1) = 0 ∧ ¬Delt2(n1)
∧n1 ∈ HPt2(pcurr)

(5.4)

DeleteNode
n1 ∈ HPt1(pcurr) :

DN(n1),
Delt2(n1) ∧ n1 ∈ DLt2(pcurr)
∧n1 /∈ HPt2(pcurr)

(5.5)

CompareAndSwapRef

l1 7→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) :
CASR(l1,⊥,n2) = True,

l1 7→t2 n2 ∧ l1 ∈ Reft2(n2)∧
n2 ∈ HPt2(pcurr)

(5.6)

∃n1 . l1 7→t1 n1 ∧ n2 = n1 :
CASR(l1,n2,⊥) = True,

l1 7→t2 ⊥ ∧ l1 /∈ Reft2(n2)
(5.7)

∃n1 . l1 7→t1 n1 ∧ n2 = n1∧
n3 ∈ HPt1(pcurr) ∧ l1 ∈ Reft1(n2) :

CASR(l1,n2,n3) = True,
l1 7→t2 n3 ∧ l1 /∈ Reft2(n2)∧
l1 ∈ Reft2(n3) ∧ n3 ∈ HPt2(pcurr)

(5.8)

∃n1 . l1 7→t1 n1 ∧ n1 6= n2 ∧ n3 ∈ HPt1(pcurr) :
CASR(l1,n2,n3) = False,

l1 7→t2 n1 ∧ n3 ∈ HPt2(pcurr)
(5.9)

Scan
:

Scan(),
∀ni ∈ DLt1(pcurr).(ni ∈ Ft2∧
(∀nx s.t. lx 7→t1 nx ∧ lx ∈ Links(ni).
lx /∈ Reft2(nx)) ∨ (∃pj .ni ∈ HPt1(pj))∨
(∃nj .nj /∈ Ft1 ∧ ∃lx ∈ Links(nj).lx 7→t1 ni)

(5.10)

TerminateNode (Implemented by the application programmer).

n1 ∈ DLt1(pcurr) :
TerminateNode(n1, c),
∀lx ∈ Links(n1).(lx 7→t2 ⊥∧
∀nx s.t. lx 7→t1 nx . lx 6∈ Reft2(nx)

(5.11)
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CleanUpNode (Implemented by the application programmer).

∃pi.n1 ∈ DLt1(pi) ∧Delt1(n1) :
CleanUpNode(n1),
∀lx ∈ Links(n1).(lx 7→t2 ⊥∨
(∃nx.lx 7→t2 nx ∧ ¬Delt1(nx)))

(5.12)

CleanUpLocal

:
CleanUpLocal(),
∀ni ∈ DLt1(pcurr).(∀lx ∈ Links(ni).
lx 7→t2 ⊥ ∨ (∃nx.lx 7→t2 nx ∧ ¬Delt1(nx)))

(5.13)

CleanUpAll

:
CleanUpAll(),
∀pi.(∀nj ∈ DLt1(pi).(∀lx ∈ Links(nj).
lx 7→t2 ⊥ ∨ (∃nx.lx 7→t2 nx ∧ ¬Delt1(nx))))

(5.14)

StoreRef (Can only be used to update links in nodes that are inaccessible to
all other threads.)

l1 7→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) :
SR(l1,n2),

l1 7→t2 n2 ∧ l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)
(5.15)

∃n1.l1 7→t1 n1 ∧ n2 ∈ HPt1(pcurr) :
SR(l1,n2),

l1 7→t2 n2 ∧ l1 /∈ Reft2(n1)∧
l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)

(5.16)

Definition 5.5.2 A node n is said to be reclaimable at time t iff Reft(n) = ∅
and ∀p.n /∈ HPt(p) and Delt(n).

5.5.1 Safety

Lemma 5.5.1 If a node n is reclaimable at time t1 then Reft(n) = ∅ for all
t ≥ t1.

Proof: Assume towards a contradiction that a node n was reclaimable at time
t1 and that later at time t2 Ref(n)t2 6= ∅. From the definition of reclaimable
follows that at time t1 there were no shared links pointing to n and no process
had a hazard pointer to n.

Then, clearly, n has to have been stored to some shared link l after time
t1 and before t2. There are only two operations that can update a shared
link: StoreRef (SR) and CompareAndSwapRef (CASR). However both of these
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operations require that process issuing the operation has a hazard pointer to n
at that time. There are two cases:
(i) The process has had a hazard pointer set to n since already before time t1.
This is impossible since there were no hazard pointers to n at time t1.
(ii) The process set the hazard pointer to n at a time later than t1. This is
impossible as the only way to set a hazard pointer to an existing node is the
DeRefLink operation and it requires that there is a shared link pointing to n to
dereference and at time t1 there are no such links. (See also the linearizability
proof for DeRefLink)

So since there cannot be any processes capable of using StoreRef or Com-
pareAndSwapRef to update a link to point to n at time t1 or later we have that
Reft(n) = ∅ for all t ≥ t1. ¤

Lemma 5.5.2 A node n returned by a DeRefLink(l1) operation performed by a
process p is not reclaimable and cannot become reclaimable before a correspond-
ing ReleaseRef(n) operation is performed by the same process.

Proof: The node n is not reclaimable when DeRefLink returns because p has
set a hazard pointer to point to n at line D4. Furthermore, line D5 verifies
that n is referenced by l1 also after the hazard pointer was set which guarantees
that n cannot have become reclaimable between line D3 and D4 since n is still
referenced by a shared link.34 ¤

Lemma 5.5.3 The mm ref field together with the hazard pointers provides a
safe approximation of the Reft(n) set.

Proof: The reference count field, mm ref, in each node approximates the set
of links referencing n Ref(n). As such the mm ref field of a node n is only
guaranteed to be accurate when there are no ongoing5 operations concerning
n. The only operations that may change the mm ref field of a node n are
CompareAndSwapRef and StoreRef .

For the memory management scheme the critical aspect of the Ref(n) set is
to know whether it is empty or non-empty to determine if the node is reclaimable
or not. In particular, the important case is when the mm ref field is to be
increased, since delaying a decrease of the reference count will not compromise
the safety of the memory management scheme.

Thus, although the mm ref field of a node n to be stored in a shared link by a
CompareAndSwapRef or StoreRef operation is not increased in the same atomic
time instant as the operation takes effect, it does not matter for the safety
of the memory management scheme since the node is clearly not reclaimable

3Note 1: Between D3 and D5 n might have been moved away from l1 and then moved
back again.

4Note 2: Between D3 and D4 the “original” n could actually have been removed and
reclaimed and then the same memory could be reused for a new node n which is stored in l1
before D5. This is no problem as the “new” n is what the DeRefLink really returns.

5Consider any crashed operations as ongoing.



116 CHAPTER 5. LOCK-FREE MEMORY RECLAMATION

during the duration of the operation anyway, since the process performing the
operation is required to have a hazard pointer set to n. ¤

Lemma 5.5.4 The operation Scan will never reclaim a node n that is not re-
claimable.

Proof: Scan is said to reclaim a node n when it is returned to the pool of free
memory, which takes place at line SC23.

Assume that Scan reclaimed a node n at time t3 and let time t1 and t2 denote
the time Scan executed line SC5 and line SC19 for the node n, respectively.

First, note that there exists no process p such that n ∈ HP (p) during the
whole interval between t1 and t2 since such a hazard pointer would be detected
by Scan (lines SC9 - SC13). Consequently, any process that is able to access n
after time t3 must have dereferenced (with DeRefLink) a shared link pointing n
after time t1.

Second, since Scan is reclaiming the node, we know that the mm trace field
of n, which were set to true at line SC5, and the mm ref field, which was verified
to be zero at line SC6, still had those values when line SC19 was reached. This
implies that:
(i) There were no StoreRef or CompareAndSwapRef operations to store n in
a shared link that started before t1 and had not finished before t2, since the
hazard pointers to n these operations require would have been detected when
Scan searched the hazard pointers at lines SC9 - SC13.
(ii) There were no StoreRef or CompareAndSwapRef operations to store n in
a shared link that finished between t1 and t2, as a such operation would have
cleared the mm trace field and thereby caused the comparison at SC19 to fail.
Therefore, there were no ongoing StoreRef or CompareAndSwapRef operation to
store n in a shared link at the time Scan executed line SC5 and, consequently, as
these operations are the only ones that can increase the mm ref field, we have
Reft1(n) = ∅. Further, because of (ii) there cannot have been any StoreRef
or CompareAndSwapRef operation to store n in a shared link that started and
finished between t1 and t2.

Since Reft1(n) = ∅ no DeRefLink operation can finish by successfully deref-
erence n after time t1 unless n is stored to a shared link after time t1. However,
as we have seen above such a store operation must begins after time t1 and finish
after time t2 and the process performing it must therefore, by our first obser-
vation that no single process could have held a hazard pointer to n during the
whole interval between t1 and t2, have dereferenced n after t1. This is a clearly
a contradicition and therefore it is impossible for any process to successfully
dereference n after time t1.

From the above we have that Reft(n) = ∅ for t ≥ t1 and ∀p . n /∈ HPt(p)
for t ≥ t2 and therefore, since t3 > t2 > t1, n is reclaimable at time t3 . ¤
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Lemma 5.5.5 The operation Scan will never reclaim a node n that is accessed
by a concurrent CleanUpAll operation.

Proof: Before reclaiming the node n stored at position i in its DL Nodes
array Scan writes NULL into DL Nodes[i] (line SC20) and then checks that
DL Claims[i] is zero (line SC21).

Before accessing the node n the CleanUpAll operation reads n from DL Nodes[i]
(line CA3), then increases DL Claims[i] (line CA5) and then verifies that DL Nodes[i]
still contains n (line CA6).

Now, for a concurrent CleanUpAll operation to also access n it has to do
both reads of DL Nodes[i] (line CA3 and line CA5) before Scan performs line
SC20, but then DL Claims[i] has been increased (line CA3) and Scan will detect
this at line SC21 and will not reclaim the node.

If, on the other hand, Scan reads a claim count of 0 at line SC21, then the
concurrent CleanUpAll operation will read NULL from DL Nodes[i] at line CA6
and will not access the node. ¤

5.5.2 Bounding the number of deleted but unreclaimed
nodes

Theorem 5.5.3 For each thread pi the maximum number of deleted but not
reclaimed nodes in DL(pi) is at most N · (k + lmax + α + 1), where N is the
number of threads in the system, k is the number of hazard pointers per thread,
lmax is the maximum number of links a node can contain and α is the maximum
number of links in live nodes that may transiently point to a deleted node.6

Proof: The only operation that increases the size of DL(pi) is DeleteNode and
when |DL(pi)| reaches THRESHOLD 1 it runs CleanUpAll before attempting
to reclaim nodes.

First consider the case where there are no concurrent DeleteNode operations
by other threads. Then, after CleanUpAll , there cannot be any deleted nodes
that point to nodes in DL(pi) left. So, what may prevent pi from reclaiming
one particular node in DL(pi)? The node might have: (i) a hazard pointer
pointing to it, or (ii) there might be some live nodes still pointing to it. The
number of links in live nodes, α, that might point to a deleted node depends
on the application data-structure using the memory manager. We require that
each application operation that deletes a node must also remove all references
to that node from the live nodes of the data-structure before it is completed,
which ensures that there at all times are at most N · α links in live nodes that
point to deleted nodes. So, in the absence of concurrent DeleteNode operations
the maximum number of nodes in DL(pi) that a Scan is unable to reclaim is
N · (k + α).

In the case where there are concurrent DeleteNode operations three more
things of interest may occur: (i) Additional nodes that might hold pointers to the

6Note that the numbers lmax and α depend only on the application.



118 CHAPTER 5. LOCK-FREE MEMORY RECLAMATION

nodes in DL(pi) might be deleted after the start of CleanUpAll and prevent Scan
from reclaiming any node. However, in that case pi is free to retry CleanUpAll
and Scan again since some concurrent operation has made progress. (ii) Some
concurrent DeleteNode operation may get delayed or crash, either between line
DN2 and DN5 or between SC21 and SC22 in its call to Scan which will “hide”
one deleted node that might contain links that point to nodes in DL(pi) from
pi’s CleanUpAll . In this way each other thread can prevent pi from reclaiming up
to lmax nodes in DL(pi). (iii) Finally, concurrent CleanUpAll operations might
prevent pi from reclaiming reclaimable nodes by claiming them for performing
CleanUpNode operations on them. However, if such a node is encountered pi’s
Scan will use TerminateNode to set the links of the node to NULL and set the
DL Done flag for the node, which prevents future CleanUpAll operations from
preventing the node from being reclaimed. If pi needs to retry the Scan, it can
only be prevented from reclaiming at most N of the reclaimable nodes it failed
to reclaim due to concurrent CleanUpAlls during the previous Scan.

So, the maximum number of nodes in DL(pi) that pi cannot reclaim is less
than N (̇k + lmax + α + 1). ¤

Corollary 5.5.1 The cleanup threshold, THRESHOLD 1, used by the algo-
rithm should be set to N (̇k + lmax + α + 1).

Corollary 5.5.2 The number of deleted but not yet reclaimed nodes in the sys-
tem is bounded from above by

N2 · (k + lmax + α + 1),

where N is the number of threads in the system, k is the number of hazard
pointers per thread, lmax is the maximum number of links a node can contain
and α is the maximum number of links in live nodes that may transiently point
to a deleted node.

5.5.3 Linearizability

Lemma 5.5.6 The DeRefLink (DRL(l1) = n1) operation is atomic.

Proof: A DeRefLink(DRL) operation has direct interactions with Compare-
AndSwapRef (CASR) that targets the same link and the memory reclamation
in Scan. A CASR operation takes effect before the DRL operation iff the CAS
instruction at line C1 is executed before *link is read at line D5 in DRL.

A Scan that reads the hazard pointer set by DRL at line D4 after it was
set will not free the node dereferenced by DRL (the test at line SC19 in Scan
prevents this. If a concurrent Scan read the hazard pointer in question after it
was set by DRL then it will not free the node. If Scan read the hazard pointer
in question before it was set by DRL then Scan will detect that the reference
count of the node is non-zero or has been non-zero during the execution of the
Scan operation. ¤
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Lemma 5.5.7 The ReleaseRef (RR(n1)) operation is atomic.

Proof: The operation ReleaseRef takes effect at line R2 when the hazard
pointer to the node is set to NULL. ¤

Lemma 5.5.8 The NewNode (NN() = n1) operation is atomic if the memory
allocator used to manage the pool of free memory itself is linearizable.

Proof: The operation NewNode takes effect when the memory for the new
node is removed from the pool of free memory. For a linearizable memory
allocator this will take place at a well-defined time instant. ¤

Lemma 5.5.9 The DeleteNode (DN(n1)) operation is atomic.

Proof: The operation DeleteNode takes effect when the node is marked as
deleted at line DN2. ¤

Lemma 5.5.10 The CompareAndSwapRef (CASR(l1, n1, n2)) operation is atomic.

Proof: The CompareAndSwapRef (CASR(n1)) operation has direct interac-
tions with other CompareAndSwapRef (CASR) and DeRefLink operations that
targets the same link and with the memory reclamation in Scan.

A CASR operation takes effect when the CAS instruction at line C1 is exe-
cuted. ¤

Lemma 5.5.11 The reclamation of a deleted node n by Scan is atomic.

Proof: Scan is said to reclaim a node n when it is returned to the pool of free
memory, which takes place at line SC23. The node is safe to reclaim because the
tests at line SC19 guarantees that (i) Scan found no hazard pointers pointing
to the node and, (ii) the reference count of the node has been consistently 0
since before the hazard pointers were scanned. That (ii) holds is ensured by
the n.mm trace bit, which detects if a node, n, had Ref(n) = 0 when Scan
executed line SC4, but a pointer to it was later stored in a shared link variable
so that there were no hazard pointer to it when Scan read them at line SC9
to SC13. Then, this invocation of Scan will not attempt to reclaim the node
even if the shared link to the node is removed again, since the n.mm trace was
cleared when the pointer to the node was stored in a shared variable (either by
a CompareAndSwapRef or a StoreRef ).

The test at line SC21 guarantees that there are no other threads that might
access the node as part of the CleanUpAll operation. A CleanUpAll operation
verifies that the node is still there at line CA6 after increasing the claim counter
at line CA5 before attempting to access the node. If Scan reads a claim count
of 0 at line SC21 then there are no concurrent CleanUpAll operations that might
access the node, because they will read NULL at line CA6. ¤
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Theorem 5.5.4 The algorithm correctly implements a linearizable garbage col-
lector.

Proof: This follows from Lemmas 5.5.6, 5.5.7, 5.5.8, 5.5.9 and 5.5.10. ¤

5.5.4 Proof of the Lock-free Property

Lemma 5.5.12 With respect to the retries caused by synchronization, one op-
eration will always do progress regardless of the actions by the other concurrent
operations.

Proof: We now examine the possible execution paths of our implementation.
The operations ReleaseRef , NewNode and CompareAndSwapRef do not contain
any loops and will thus always do progress regardless of the actions by the other
concurrent operations. In the remaining concurrent operations there are several
potentially unbounded loops that can delay the termination of the operations.
We call these loops retry-loops. If we omit the conditions that are because of the
operations semantics (i.e. searching for the correct criteria etc.), the loop retries
when sub-operations detect that a shared variable has changed value. This is
detected either by a subsequent read sub-operation or by a failed CAS. These
shared variables are only changed concurrently by other CAS sub-operations.
The read operation in line D5 will possibly fail because of a successful CAS
operation in lines C1, TN7 or CN5. Likewise, the CAS operations in lines C1,
TN7 or CN5 will possibly fail if one of the other CAS operations has been suc-
cessful. According to the definition of CAS, for any number of concurrent CAS
sub-operations, exactly one will succeed. This means that for any subsequent
retry, there must be one CAS that succeeded. As this succeeding CAS will
cause its retry loop to exit, and our implementation does not contain any cyclic
dependencies between retry-loops that exit with CAS, this means that the cor-
responding DeRefLink operation or TerminateNode suboperation will progress.

In the operation DeleteNode there are calls to three suboperations, CleanU-
pLocal , Scan and CleanUpAll which contains loops, inside an unbounded loop.
The loop in the suboperation CleanUpNode, used by CleanUpLocal and CleanU-
pAll , is bounded in the absence of concurrent DeleteNode operations because of
Assumption 5.4.1. If there are concurrent DeleteNode operations CleanUpNode
only their progress, i.e. that they set the mm del bit on additional nodes, might
force the loop in CleanUpNode to continue. So CleanUpNode is lock-free. The
loops in CleanUpAll are all bounded and the loop in CleanUpLocal and in Scan
are bounded since the size of the DL Nodes list is bounded by Theorem 5.5.3.
The loop in DeleteNode is also bounded by the bound in Theorem 5.5.3.

Consequently, independent of any number of concurrent operations, one op-
eration will always progress. ¤

Theorem 5.5.5 The algorithm implements a lock-free garbage collector.

Proof: The theorem follows from Lemma 5.5.12. ¤
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5.6 Experimental evaluation

We have performed experiments in our effort to estimate the average overhead
of using the new lock-free memory management algorithm in comparison to pre-
vious lock-free memory management algorithms supporting reference counting.
For this purpose we have chosen the lock-free algorithm of a deque (double-ended
queue) data structure by Sundell and Tsigas [ST04, Sun04a]. As presented, the
implementation of this algorithm uses the lock-free memory management with
reference counting by Valois et al. [Val95a, MS95]. In order to fit better with the
new memory management algorithm, the recursion calls in the deque algorithm
were unrolled.

In our experiments, each concurrent thread performed 10000 randomly cho-
sen sequential operations on a shared deque, with an equal distribution among
the PushRight, PushLeft, PopRight and PopLeft operations. Each experiment
was repeated 50 times, and an average execution time for each experiment was
estimated. Exactly the same sequence of operations was performed for all dif-
ferent implementations compared.

The experiments were performed using different number of threads, vary-
ing from 1 to 16 with increasing steps. In our experiments we compare two
implementations of the lock-free deque; (i) using the lock-free memory man-
agement by Valois et al., and (ii) using the new lock-free memory management
(including support for dynamic number of threads) with 6 hazard pointers per
thread. These are the only memory management algorithms which (i) satisfy
the demands of the lock-free deque algorithm (as well as other common lock-
free algorithms that need to traverse through nodes which may concurrently be
deleted, such as the Queue algorithm used for the example in Algorithm 5.8)
and (ii) work with available atomic primitives. Both implementations use a
shared fixed-size memory pool (i.e. freelist) for memory allocation and free-
ing. Two different platforms were used, with varying number of processors and
level of shared memory distribution. Firstly, we performed our experiments
on a 4-processor Xeon PC running Linux. In order to evaluate our algorithm
with higher concurrency we also used a 8-processor SGI Origin 2000 system
running Irix 6.5. A clean-cache operation was performed just before each sub-
experiment. All implementations are written in C and compiled with the highest
optimization level. The atomic primitives are written in assembly. The results
from the experiments are shown in Figure 5.3. The average execution time is
drawn as a function of the number of threads.

Our results show that the new lock-free memory management algorithm
outperforms the corresponding algorithm by Valois et al. for any number of
threads. The advantages of using the new algorithm appear to be even more
significant for systems with non-uniform memory architecture.
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Figure 5.3: Experiment with lock-free deques and various memory reclamation
algorithms.
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5.7 Conclusions

To the best of our knowledge, we have presented the first lock-free algorithm for
lock-free garbage collection based on reference counting that has all the follow-
ing features: (i) guarantees the safety of local as well as global references, (ii)
provides an upper bound of deleted but not yet reclaimed nodes, (iii) is compat-
ible with arbitrary memory allocation schemes, and iv) uses atomic primitives
which are available in modern architectures.

Experimental results indicate that our new lock-free garbage collection can
significantly improve the performance and reliability of implementations of lock-
free dynamic data structures that require the safety of global references. We
believe that our implementation is of highly practical interest for multi-processor
applications. We are currently incorporating it into the NOBLE [ST02] library.
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Chapter 6

NBmalloc: Allocating
memory in a lock-free
manner1

Anders Gidenstam Marina Papatriantafilou

Philippas Tsigas

Abstract

Efficient, scalable memory allocation for multithreaded applications on multipro-

cessors is a significant goal of recent research. In parallel, and not only recently, in the

distributed computing literature it has been emphasized that lock-based concurrency-

control may limit the parallelism in multiprocessor systems. Thus, system services

that employ such methods can be a hinder in realizing the potential in these systems.

A natural research question is the plausibility and the impact of lock-free concurrency

control in key services for multiprocessors, such as in the memory allocation service,

which is the theme of this work. We show the design and implementation of NBmal-

loc, a lock-free memory allocator designed to enhance the parallelism in the system.

The architecture of NBmalloc is inspired by Hoard, a successful concurrent memory

allocator, with modular, scalable design that preserves scalability and helps avoiding

false-sharing and heap blowup. Within our effort on designing appropriate lock-free

algorithms for this system, we propose and show a lock-free implementation of a new

data structure, flat-set, supporting conventional “internal” operations as well as “inter-

object” operations, for moving items between flat-sets. The design of NBmalloc also

involved a series of other algorithmic problems, which are discussed in the paper,

1This work was supported by computational resources provided by the Swedish National
Supercomputer Centre (NSC). This chapter contains an extended version of the paper that
appeared in the proceedings of ESA 2005, Palma, Spain, 3-7 October, 2005.
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along with the solutions designed and adopted in this work. Further, we present the

implementation of NBmalloc in a set of multiprocessor systems and the study of its

behaviour. The results show that the good properties of Hoard w.r.t. false-sharing and

heap-blowup are preserved, while the scalability properties are enhanced even further

with the help of lock-free synchronization.

6.1 Introduction

Non-blocking implementations of shared data objects are an alternative to the
traditional solution for maintaining the consistency of a shared data object
(i.e. for ensuring linearizability [HW90]) by enforcing mutual exclusion. Non-
blocking synchronization allows multiple tasks to access a shared object at the
same time, but without enforcing mutual exclusion [Bar93, GC96, Her91, Rin99,
HPT02]. Regarding efficiency and scalability, it is known that the use of locks in
synchronization is a limiting factor, especially in multiprocessor systems, since
it reduces parallelism. Thus, constructions which guarantee that concurrent
access to shared objects is free from locking are of particular interest, as they
help to increase the amount of parallelism and to provide fault-tolerance. This
type of synchronization is called lock-/wait-free, non-blocking or optimistic syn-
chronization [Bar93, GC96, Her91, Rin99]. Non-blocking algorithms have been
shown to have significant impact in applications [TZ01a, TZ02], and there is also
a library, NOBLE [ST02], containing many implementations of non-blocking
data structures. Besides, the potential of this type of synchronization in the
performance of system-services and data structures has also been pointed out
in [DG02, GC96, MP91].

The present article studies the impact of lock-free synchronization on the
memory-allocation system service. Some form of dynamic memory manage-
ment is used in most computer programs for multiprogrammed computers. It
comes in a variety of flavors, from the traditional manual general purpose allo-
cate/free type memory allocator to advanced automatic garbage collectors. Here
we focus on conventional, general-purpose memory allocators (such as the “libc”
malloc) where the application can request (allocate) arbitrarily-sized blocks of
memory and free them in any order. Essentially a memory allocator is an online
algorithm that manages a pool of memory (heap), e.g. a contiguous range of
addresses or a set of such ranges, keeping track of which parts of that mem-
ory are currently given to the application and which parts are unused and can
be used to meet future allocation requests from the application. The memory
allocator is not allowed to move or otherwise disturb memory blocks that are
currently owned by the application.

An important optimization goal of a good allocator is to minimize fragmenta-
tion, i.e. minimize the amount of free memory that cannot be used (allocated)
by the application. Fragmentation is distinguished in internal and external.
Internal fragmentation results in cases that free memory is wasted when the
application is given a larger memory block than it requested. External frag-
mentation results in cases when free memory has been split into non-contiguous
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blocks that are too small to be useful to satisfy the requests from the application.
Moreover, multi-threaded programs add some more complications to the

memory allocator. Obviously some kind of synchronization has to be added
to protect the heap during concurrent requests. There are also other issues
which have significant impact on application performance when the application
is run on a multiprocessor [Ber02]. Namely, a good concurrent memory allocator
should (i) avoid false sharing, which is when different parts of the same cache-
line end up being used by threads running on different processors; (ii) avoid
heap blowup, which is an overconsumption of memory that may occur if the
memory allocator fails to make memory deallocated by threads running on one
processor available to threads running on other processors; (iii) ensure efficiency
and scalability, i.e. the concurrent memory allocator should be as fast as a good
sequential one when executed on a single processor and its performance should
scale with the load in the system.

The Hoard [BMBW00] concurrent memory allocator is designed to meet the
above goals. The allocation is done on the basis of per-processor heaps, which
avoids false sharing and reduces the synchronization overhead in many cases,
improving both performance and scalability. Memory requests are mapped to
the closest matching size in a fixed set of size-classes, which bounds internal
fragmentation. The heaps are sets of superblocks, where each superblock han-
dles blocks of one size class, which helps in coping with external fragmentation.
To avoid heap blowup, freed blocks are returned to the heap they were allocated
from and empty superblocks may be reused in other heaps.

The present paper proposes a new memory allocator based on lock-free, fine-
grained synchronization, to enhance parallelism, fault-tolerance and scalability.
The architecture of our allocation system is inspired by Hoard, due to its well-
justified design decisions, which we roughly outlined above. Further, in the pro-
cess of designing appropriate data structures and lock-free synchronization algo-
rithms for our system, we introduced a new data structure, which we call flat-set.
The operations supported by the sets include operations of common sets, as well
as “inter-object” operations, for moving an item from one flat-set to another in
a lock-free manner. The lock-free algorithms we introduce make use of standard
synchronization primitives provided by multiprocessor systems, namely single-
word Compare-And-Swap, or its equivalent Load-Linked/Store-Conditional . The
design of the proposed memory allocator also involved a set of other interest-
ing algorithmic issues, which are discussed and analyzed here, along with the
solutions designed and adopted in NBmalloc.

We have implemented and evaluated the allocator proposed here on common
multiprocessor platforms, namely an UMA Sun Fire 880 running Solaris 9, a
NUMA Origin 3800 running IRIX 6.5 and an Intel Xeon PC running Linux
2.9.6. We compare our allocator with the standard “libc” allocator of each
platform and with Hoard (on the Sun system, where we had the original Hoard
allocator available) using standard benchmark applications to test the efficiency,
scalability, cache behaviour and memory consumption behaviour. The results
show that our system preserves the good properties of Hoard, while it offers a
higher scalability potential, as justified by its lock-free nature.
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Recently Michael presented a lock-free allocator [Mic04c] that, like our con-
tribution, is loosely based on the Hoard architecture and uses Compare-And-
Swap. Despite both having started from the Hoard architecture, we have used
two different approaches to achieve lock-freedom. Another allocator that tries
to reduce the use of locks is the LFMalloc [DG02]. To be able to relate these
contributions with the one presented here some more detail is needed and for
this reason we describe this relation in section 6.8.

Also of relevance to lock-free memory allocators are algorithms for lock-
free memory management and garbage collection. Such schemes need to be
used in lock-free dynamic data-structures to provide safe reclamation of dy-
namically allocated shared memory blocks, i.e. to make sure that a deleted
memory block is not reused until it is certain that it cannot be accessed by any
concurrent or future operation anymore. Some schemes focus on the safety of
local references to objects only, such as the efficient hazard pointer algorithm
by Michael [Mic02b, Mic04a] and the algorithm by Herlihy et al. [HLM02], but
these cannot be used with all data-structures. Other schemes based on reference
counting can guarantee the safety of local as well as global references to objects.
In this category we have the work of Valois et al. [Val95a, MS95], Detlefs et
al. [DMMS01], Herlihy et al. [HLMM02] and Gidenstam et al. [GPST05].

Earlier related work in similar direction is the work on non-blocking oper-
ating systems by Massalin and Pu [MP91, Mas92] and Greenwald and Cheri-
ton [GC96, Gre99]. The respective algorithms, however, made extensive use of
the 2-Word-Compare-And-Swap (2CAS) primitive, which can update two arbi-
trary memory locations in one atomic step, while this primitive is not available
in current systems and is expensive to simulate in software.

The next section provides some more technical background on concurrent
memory allocation and lock- and wait-free synchronization. (Throughout the
paper, we use the terms non-blocking and lock-free interchangeably). Earlier
and recent related work is discussed in more detail in section 6.8, after the
presentation of the more technical background and of our method and im-
plementation, as some insight in these is needed to relate the contributions.
Sections 6.3, 6.4 and 6.5 describe our memory allocator, including the lock-
free implementation of the flat-sets data structure designed for this purpose.
Section 6.7 describes details on the implementation done for the experimental
evaluation of the system, including the platforms on which it was implemented
and benchmark information. The results of our experimental evaluation are also
presented there. We conclude with a section discussing the achieved results and
describing some future work.

6.2 Background

6.2.1 Concurrent Memory Allocators

As mentioned in the introduction, there is a set of extra complications intro-
duced in the memory allocation issues from the perspective of multiprocessor
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systems and multithreaded applications. We discuss them here, giving also some
more technical details.

The first of these is false sharing which is when different parts of the same
cache-line end up being used by threads running on different processors. This
will put a potentially large and unnecessary load on the cache-coherence mech-
anism. This can never be avoided completely since application threads may
pass allocated memory between themselves but a memory allocator can actively
induce false sharing by directly satisfying memory requests from different pro-
cessors with memory from the same cache-line.

The second issue is heap blowup which is a potentially unbounded overcon-
sumption of memory that might occur if the memory allocator fails to make
memory freed by one processor available to others, e.g. as the result of a coarse
policy for avoiding false sharing. A typical application that triggers this is an
application that has producer and consumer threads, where the producer allo-
cates memory and passes it to the consumer which in turn frees the memory.
If the memory freed by the consumers is never made available to the producers
then the resulting heap blowup can be unbounded.

The last issues are scalability and speed. For a memory allocator to be
scalable, its performance has to scale well with the number of processors and the
load in the system. In terms of speed, the concurrent memory allocator should
be about as fast as a good sequential one in order to ensure good performance
even when a multithreaded program is executed on a single processor.

Below follows a brief overview of some concurrent memory allocator designs
based on the taxonomy presented in [Ber02]:

Single serial heap. A normal sequential memory allocator is protected by
a global lock. This type of memory allocator scales poorly on multiprocessors,
since only one thread can access the heap at a time. Moreover, in some instances
it also performs bad on a single processor since the thread holding the lock
protecting the heap might be delayed inside the memory allocator code, by, for
example, a preemption or page fault. It is also prone to induce false sharing,
but does not suffer from heap blowup and should be fast on a single processor
in most cases (the potential for threads being delayed while holding the lock,
as mentioned above, is an exception). Examples of this kind of allocator is the
standard memory allocators on Solaris, Irix and Windows 2000.

Concurrent single heap. A memory allocator that uses a single heap imple-
mented using fine-grained synchronization so that several threads may operate
on it concurrently. This kind of memory allocator avoids heap blowup and has
the potential to be scalable. However, it is prone to induce false sharing and is
not easy to make fast due to the potential for very high levels of contention and
large synchronization overhead.

Pure private heaps. The memory allocator maintains a separate heap for
each processor, where threads running on that processor allocate memory. When
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a thread frees some memory it is added to the heap of the processor running that
thread. This causes pure private heaps to suffer from potentially unbounded
heap blowup. On the other hand this type of memory allocator is scalable, fast
and less prone to induce false sharing (if designed correctly). Examples: STL
allocator [SGI03], Cilk [BL94].

Private heaps with ownership. These memory allocators are similar to
pure private heaps but freed memory is always returned to the heap it was
allocated from. This bounds the worst case heap blowup to O(P ), where P is the
number of processors. Examples: MTmalloc (Solaris), Ptmalloc (glibc) [Glo03].

Private heaps with thresholds. Private heaps with thresholds use a global
heap in addition to the per-processor heaps in order to avoid the O(P ) heap
blowup that private heaps with ownership suffer from. This is done by trans-
ferring part of the free memory in a per-processor heap to the global heap when
the amount of free memory in the per-processor heap becomes too large. The
memory in the global heap can be transferred to other per-processor heaps for
reuse as needed. Examples: Hoard[BMBW00], LFmalloc[DG02](mostly) and
NBmalloc, the memory allocator presented in this paper.

Thread-local allocations. Since most of the dynamic memory requests in
many applications concern memory that will only be used by one thread, it
might be advantageous to distinguish between these thread-local allocations and
allocations of memory that is to be shared between threads. In particular the
thread-local memory could be handled without any synchronization. The dis-
tinction between thread-local allocations and shared memory allocations could
be made explicitly by the programmer (using an extension of the traditional
malloc interface) or automatically by compile time analysis, as for example
in [Ste00].

6.2.2 Non-blocking Synchronization

The most commonly required consistency guarantee for shared data objects is
atomicity, a.k.a. linearizability [HW90]. A shared object (its implementation)
is atomic or linearizable if it guarantees that even when operations overlap in
time, each of them appears to take effect in an atomic time instant that lies
in its respective time duration, in a way that the effect of each operation is in
agreement with the object’s sequential specification. The latter means that if
we speak of e.g. read/write objects, the value returned by each read equals the
value written by the most recent write according to the sequence of “shrunk”
operations in the time axis.

Compared to the traditional solution for maintaining the consistency of a
shared data object (i.e. for ensuring linearizability) by enforcing mutual exclu-
sion, non-blocking implementations of shared data objects are an alternative
approach. Non-blocking mechanisms allow multiple tasks to access a shared
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object at the same time, but without enforcing mutual exclusion [Bar93, GC96,
Her91, Rin99]. Non-blocking (a.k.a. optimistic) synchronization can be lock-free
or wait-free. Lock-free algorithms guarantee that regardless of the contention
caused by concurrent operations and the interleaving of their steps, at each
point in time there is at least one operation that is able to make progress. How-
ever, the progress of other operations might cause one specific operation to take
unbounded time to finish. In a wait-free algorithm, every operation is guaran-
teed to finish in a bounded number of its own steps, regardless of the actions of
concurrent operations.

Lock-free algorithms typically involve fine-grained synchronization, with at-
tempts to commit updates using certain synchronization primitives (like CAS ,
LL/SC ; see below) or to verify non-interfered access to small amounts of shared
data. If such an attempt fails, then that process/thread needs to retry. The
above may happen due to preemption or due to interleaving by threads running
in parallel. Helping is a method proposed to alleviate the problem: an opera-
tion that detects that it has preempted or has otherwise interleaved steps with
another operation, helps the latter operation to progress before proceeding with
its own steps, to reduce the fail-retry overhead.

It has been shown that there exist universal synchronization primitives, that
can implement, in a wait-free manner –hence, also in a lock-free manner–, any
object with a sequential specification using those primitives [Her91]. There exist
also universal constructions that can implement any object using these univer-
sal synchronization primitives [Her91]. These constructions also use helping.
However, being generic, they are are introduced for showing feasibility and not
performance.

Some of the aforementioned universal primitives are common instructions
available in most processors, e.g. the Compare-And-Swap instruction (also de-
noted CAS), which atomically executes the steps described in Fig. 6.1. If CAS
cannot assign the new value to the location for which it is invoked, we say
that it fails, otherwise, it succeeds. CAS is available in e.g. SPARC proces-
sors. Another primitive that is equivalent with CAS in synchronization power
is the Load-Linked/Store-Conditional (also denoted LL/SC ) pair of instructions,
available in, e.g. MIPS processors. LL/SC is used as follows: (i) LL loads a
word from memory. (ii) A short sequence of instructions may modify the value
read. (iii) SC stores the new value into the memory word, unless the word has
been modified by other process(es) after LL was invoked. In the latter case the
SC fails, otherwise the SC succeeds. Another useful primitive is Fetch-And-Add
(also denoted FAA), described in Fig. 6.1. FAA can be simulated in software
using CAS or LL/SC when it is not available in hardware.

An issue that sometimes arises in connection with the use of CAS , is the
so-called ABA problem. It can happen if a thread reads a value A from a shared
variable, and then invokes a CAS operation to try to modify it. The CAS
will (undesirably) succeed if between the read and the CAS other threads have
changed the value of the shared variable from A to B and back to A. A common
way to cope with the problem is to use version numbers of b bits as part of the
shared variables [Val95b]. Then, for the same problem to occur, it would be
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atomic CAS(mem : pointer to integer;
new, old : integer) return integer

begin
tmp := *mem;
if tmp == old then

*mem := new; /* CAS succeeded */
return tmp;

end CAS;

atomic CAS(mem : pointer to integer;
new, old : integer) return boolean

begin
tmp := *mem;
if tmp == old then

*mem := new; /* CAS succeeded */
return tmp == old;

end CAS;

atomic FAA(mem : pointer to integer;
increment : integer) return integer

begin
tmp := *mem;
*mem := tmp + increment;
return tmp;

end FAA;

Figure 6.1: The synchronization primitives Compare-And-Swap (denoted CAS)
and Fetch-And-Add (denoted FAA).

necessary to have a sequence of 2b successful CAS operations between the read
A and its corresponding CAS , with the last such operation storing value A to the
shared variable. By choosing b appropriately, this is made extremely unlikely.
An alternative method to cope with the ABA problem is to introduce special
NULL values, which was proposed and used in a lock-free queue implementation
in [TZ01b]. An appropriate garbage-reclamation mechanism, such as [Mic02b],
can also solve the problem. This method can also be used to implement lock-free
and linearizable Load-Linked/Store-Conditional operations for arbitrarily large
objects in software [Mic04b].

There is a plethora of research articles that focus on wait-free and lock-free
synchronization (for a few examples cf. [Bar93, Har01, Her91, Her93, HPT02,
Mic02b, Moi97, Rin99, PT95, PT97, ST03, TZ01a, Val94, Val95b]). Non-
blocking algorithms have been shown to also have significant impact in ap-
plications [TZ01a, TZ02], and recently NOBLE, which is a library of shared
data structures and includes blocking and non-blocking implementations, has
been presented [ST02].
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Figure 6.2: The architecture of the memory allocator.

6.3 The NBmalloc: Architecture

The architecture of our lock-free memory allocator is inspired by Hoard [BMBW00],
which is a well-known and practical concurrent memory allocator for multipro-
cessors.

The memory allocator provides allocatable memory of a fixed set of sizes,
called size-classes. The size of memory requests from the application are rounded
upwards to the closest size-class. To reduce false-sharing and contention, the
memory allocator distributes the memory into per-processor heaps. The man-
aged memory is handled internally in units called superblocks. Each superblock
contains allocatable blocks of one size-class. Initially all superblocks belong to
the global heap. During an execution superblocks are moved to per-processor
heaps as needed. When a superblock in a per-processor heap becomes almost
empty (i.e. few of its blocks are allocated) it is moved back to the global heap.
The superblocks in a per-processor heap are stored and handled separately,
based on their size-class. Within each size-class the superblocks are kept sorted
into bins based on fullness(cf. Figure 6.2(a)). As the fullness of a particular
superblock changes it is moved between the groups. A memory request (malloc
call) first searches for a superblock with a free block among the superblocks in
the “almost full” fullness-group of the requested size-class in the appropriate
per-processor heap. If no suitable superblock is found there, it will proceed
to search in the lower fullness-groups, and, if that, too, is unsuccessful, it will
request a new superblock from the global heap. Searching the almost full su-
perblocks first reduces external fragmentation. When freed (by a call to free)
an allocated block is returned to the superblock it was allocated from and, if
the new fullness requires so, the superblock is moved to another fullness-group.
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6.4 Managing superblocks: The bounded non-
blocking flat-sets

Since the number of superblocks in each fullness-group varies over time, a suit-
able collection-type data structure is needed to implement a fullness-group.
Hoard, which uses mutual-exclusion on the level of per-processor heaps, uses
linked-lists of superblocks for this purpose, but this issue becomes very different
in a lock-free allocator. While there exist several lock-free linked-list implemen-
tations, e.g. [Har01, Mic02a, Val95b], we cannot apply those here, because not
only do we want the operations on the list to be lock-free, but we also need
to be able to move a superblock from one set to another without making it
inaccessible to other threads during the move. To address this, we propose a
new data structure we call a bounded non-blocking flat-set, supporting conven-
tional “internal” operations (Get Any and Insert item) as well as “inter-object”
operations, for moving an item from one flat-set to another.

To support “inter”-flat-set operations it is crucial to be able to move su-
perblocks from one set to another in a lock-free fashion. The requirements that
make this difficult are:

1. the superblock should be reachable for other threads even while it is be-
ing moved between flat-sets, i.e. a non-atomic first-remove-then-insert
sequence is not acceptable;

2. the number of shared references to the superblock should be the same
after a move (or set of concurrent move operations) finish as it was before
the move (or the set of moves) started.

Below we present the operations of the lock-free flat-set data structure and
the lock-free algorithm, Move, which implements the “inter-object” operation
for moving a reference to a superblock from one shared variable (pointer) to
another, while satisfying the above requirements.

6.4.1 Operations on bounded non-blocking flat-sets

A bounded non-blocking flat-set provides the following operations:

1. Get Any , which returns any item in the flat-set; and
2. Insert, which inserts an item into the flat-set.

Note that an important property that needs to be satisfied is that an item can
only reside inside one flat-set at the time; when an item is inserted into a flat-set
it is also removed from its old location.

The flat-set data structure consists of an array of M shared locations set.set[i],
each capable of holding a reference to a superblock, and a shared index variable
set.current. The data structure and operations are shown in Algorithm 6.2 and
are explained in the following paragraphs.

To speed up flat-set operations there is an index variable set.current that is
used as a marker. It contains a bit used as an empty flag for the flat-set and a
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Algorithm 6.1 The flat-set and superblock data structures in NBmalloc.
type flat-set t is record

size : constant integer
current : flat-set info
set[size] : array of superblock ref t

type flat-set info is atomic record
/* fits in one machine word */
index : integer 15
empty : boolean
version : integer 16

type superblock ref t is atomic record
/* fits in one machine word */
ptr : integer 16
version : integer 16

/* superblock ref t utility functions. */
function pointer(ref : superblock ref t) return pointer to superblock t
function version(ref : superblock ref t) return integer 16
function make sb ref(sb : pointer to superblock t, op id : integer 16)

return superblock ref t

type superblock t is record
mv info : move info t
freelist head : block ref t
free block cnt : integer
...

type move info t is record
op id : integer 16
new pos : pointer to superblock ref t
cur pos : pointer to superblock ref t

type block ref t is atomic record
/* fits in one machine word */
offset : integer 16
version : integer 16

function pointer(ref : block ref t) return pointer to block t
function version(ref : block ref t) return integer 16
function make ref(sb : pointer to block t, version : integer 16) return block ref t

type block t is record
/* block header */
owner : pointer to superblock t
next : pointer to block t
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index field that is used as the starting point for searches, both for items and for
free slots.

• The empty flag is set by a Get Any operation that discovers that the
flat-set is empty, so that subsequent Get Any operations know this; the
Insert operation and successful Get Any operations clear the flag. Due to
asynchrony, the empty flag might not always be set when (i.e. at each
time instant that) the flat-set is empty, as superblocks can be moved away
from the flat-set at any time, but it is always cleared when the flat-set is
nonempty.

• The Insert operation scans the array set.set[i] forward from the position
marked by set.current until it finds an empty slot. It will then attempt to
move the superblock reference to be inserted into this slot using the Move
operation described in detail in the next subsection.

• The Get Any operation first reads set.current to check the empty flag. If
the empty flag is set, Get Any returns immediately, otherwise it starts to
scan the array set.set[i] backwards from the position marked by set.current,
until it finds a location that contains a superblock reference. Note that
Get Any uses the operation Strict Dereference (c.f Algorithm 6.3) to read
a superblock reference from set.set[i]. Strict Dereference will also help any
ongoing Move operation concerning that superblock to finish before re-
turning the reference —or null if the superblock was moved away (cf.
next subsection for an explanation of such helping actions). This takes
care that the operations are properly linearizable.

If a Get Any operation has scanned the whole set.set[i] array without find-
ing a reference it will try to set the empty flag for the flat-set. This is
done at line G13 using CAS and will succeed if and only if set.current has
not been changed since it was read at line G2. This indicates that the
flat-set is empty so Get Any sets the empty flag and returns failure. If, on
the other hand, set.current has changed between line G2 and G13, then
either an Insert is in progress or has finished during the scan (line I6 and
I9) or some other Get Any has successfully found a superblock during this
time (line G10), so Get Any should redo the scan. To facilitate moving of
superblocks between flat-sets via Insert Get Any returns both a superblock
reference and a reference to the shared location containing it.

6.4.2 How to move a shared reference: Moving items be-
tween flat-sets

The algorithm supporting the operation Move moves a superblock reference sb
from a shared location from to a shared location to. The target location (i.e.
to) is known via the Insert operation. The algorithm requires the superblock to
contain an auxiliary variable mv info with the fields op id, new pos and cur pos
and all superblock references to have a version field (cf. Fig 6.1). Optionally,
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the mv info structure could also contain additional information. This is the case
in NBmalloc where two additional fields, cur owner and new owner, are used
to keep track of which flat-set the superblock currently is located in.

A Move operation may succeed by returning SB MOVED OK or fail (abort)
by returning SB MOVED (if the block was moved away by another overlapping
Move) or SB NOT MOVED (if the to location is occupied). It succeeds if it is
completed successfully by the thread that initiated it or by a helping thread.
It fails if it detects that another overlapping Move of the same superblock has
already removed the reference to the superblock from the from location or if it
detects that a preceding or overlapping Move of another superblock has occupied
the to location.

To ensure the lock-free property, the move operation is divided into four steps
of a number of atomic suboperations. The first step (1), to register the Move
operation, is done in the Move(sb, from, to) function in Algorithm 6.3, while
the other three steps, (2) to update location to, (3) to clear location from and
(4) to update sb.mv info, are done in the Move Help function in Algorithm 6.3.

A Move operation that encounters an unfinished Move of the same su-
perblock will help the old operation to finish before it attempts to perform
its own move. The helping procedure is performed by Move Help and is there-
fore identical to steps 2 - 4 of the move operation as described below. Since all
information required to finish an ongoing operation is stored in the mv info, any
thread that encounters the superblock can continue the operation and finish it.

1. A Move(sb, from, to) is initiated by atomically registering the opera-
tion. This is done by first reading the current value of sb.mv info us-
ing Load Linked (line M2 in Move); then, if and only if the read value of
sb.mv info.from was null (line M6) –which indicates that there are no on-
going move of this superblock– sb.mv info is set to (version(sb), to, from)
using Store Conditional (line M8). If the read value of sb.mv info.op id
was not null, then there is an ongoing Move operation that needs to be
helped before this one can proceed (line M11). If the reference to the
superblock disappears from location from before this move has been reg-
istered, this move operation is abandoned and returns SB MOVED (lines
M4 and M5). When a Move operation has been registered, its remaining
steps are performed by the Move Help operation (line M12).

2. The second step of a Move operation (and the first in the Move Help
operation) attempts to update the to location. The current value of *to
is read (line H1), a check ensures that the current operation is still active
(lines H2 to H4) and a new value for the to location is prepared (line H5).
Then CAS is used to update to with the new value if and only if the current
value is null and still the same as it was read at line H1. Otherwise, if
the contents of to is not null and not already pointing to the superblock
(line H7) the destination is occupied and this Move is abandoned. The
information about the Move is removed from the superblock (lines H8 -
H11) and SB NOT MOVED is returned.

3. The from location is set to null using CAS (line H13). The CAS succeeds if
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and only if from still contains the expected superblock reference (including
the right version). If it does not then someone else has already helped this
move to complete this step.

4. The last step is to remove the move information from the superblock. The
current value of sb.mv info is read using Load Linked (line H14) and if the
value belongs to this operation (line H15), Store Conditional is used to
replace it with the no op value. The Move operation is now finished and
returns SB MOVED OK (line H18).

In the presentation above and in the pseudo-code in Algorithm 6.3 we use
the atomic primitive CAS to update shared variables that fit in a single memory
word, but other atomic synchronization primitives, such as Load-Linked/Store-
Conditional could be used as well. The auxiliary mv info variable in a superblock
might need to be larger than one word. To handle that we use the lock-free
software implementation of Load-Linked/Store-Conditional for large words by
Michael [Mic04b], which can be implemented efficiently from the common single-
word CAS . Some hardware platforms provide a CAS primitive for words twice
as wide as the standard word size, which could also be used for this.

Dereferencing a superblock reference.

The operation Strict Dereference, last in Algorithm 6.3, is used to read a su-
perblock reference variable (i.e. a value of type superblock ref t) in shared mem-
ory when we desire to always get a reference to a stable superblock, i.e. one
that currently is not involved in any ongoing Move operation. Strict Dereference
achieves this by helping any ongoing Move operation concerning the referenced
superblock to finish before it it returns the reference.

6.4.3 Correctness

The Move operation

Lemma 6.4.1 (Linearizability) All executions of a set of (possibly concur-
rent) Move operations m1, m2, . . . ,mn on the same superblock sb are lineariz-
able.

Proof: The linearization point of each Move operation is the Store-Conditional
on line M8 of step 1: A new move operation m will successfully register when
the operation information for m is successfully written into the superblock (see
step 1 above). This can only happen when there is no other ongoing Move:s
concerning that superblock. Once the operation m has been registered (i.e. it
has completed step 1 successfully) no other move operation m′ concerning this
superblock will be able to register until m has finished (either by succeeding
or failing) by itself or by having been helped by such an m′. Therefore, such
an operation m′ will be linearized after m. By recursively repeating the above
argument, we get the lemma. ¤



6.4. MANAGING SUPERBLOCKS 139

Algorithm 6.2 The flat-set operations Get Any and Insert.
function Get Any(set : in out flat-set t, sb : in out superblock ref t,

loc : in out pointer to superblock ref t)
return status t

i, j : integer; old current : flat-set info t;
begin
G1 loop
G2 old current := set.current;
G3 if old current.empty then
G4 return FAILURE;
G5 i := old current.index;
G6 for j := 1 .. set.size do
G7 sb := Strict Dereference(&set.set[i]);
G8 if pointer(sb) /= null then
G9 loc := &set.set[i];
G10 set.current := (i, false);// Clear empty flag
G11 return SUCCESS;
G12 if i == 0 then i := set.size - 1; else i–;
G13 if CAS(&set.current, old current,

(old current.index, true)) then
G14 return FAILURE;
end Get Any;

function Insert(set : in out flat-set t, sb : in superblock ref t,
loc : in out pointer to superblock ref t)

return status
i, j : integer;

begin
I1 loop
I2 i := (set.current.index + 1) mod set.size;
I3 for j := 1 .. set.size do
I4 while pointer(set.set[i]) == null do
I6 set.current := (i, false);
I7 case Move(sb, loc, &set.set[i]) is
I8 when SB MOVED OK:
I9 set.current := (i, false);
I10 loc := &set.set[i];
I11 return SB MOVED OK;
I12 when SB MOVED:
I13 return SB MOVED;
I14 when others:
I15 end case;
I16 i := (i + 1) mod set.size;
I17 if set.set not changed since prev. iter. then
I18 return FAILURE; /* The flat-set is full. */
end Insert;
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Algorithm 6.3 The superblock Move operation.
function Move(sb : in superblock ref t,

from : in pointer to superblock ref t,
to : in pointer to superblock ref t)

return status
new op, old op : move info t;
cur from : superblock ref t;

begin
/* Step 1: Initiate move. */

M1 loop
M2 old op := Load Linked(&sb.mv info);
M3 cur from := *from;
M4 if pointer(cur from) /= pointer(sb) then
M5 return SB MOVED;
M6 if old op.new pos == null then /* No current operation. */
M7 new op := (version(cur from), to, from);
M8 if Store Conditional(&sb.mv info, new op)
M9 then break;
M10 else
M11 Move Help(make sb ref(pointer(sb), old op.op id),

old op.cur pos, old op.new pos);
M12 return Move Help(cur from, from, to);
end Move;

Lemma 6.4.2 (Reachability) Consider a superblock sb, a set of shared loca-
tions s1, s2, . . . , sm and a set of Move operations Msb on sb, where, initially,
exactly one shared location s1 contains a reference to the superblock. Then at
least one of the shared locations holds a reference to the superblock at all times
during the execution of the move operations.

Proof: The shared location from is not cleared (line H13 in Move Help until
the shared location to has already been successfully updated with a reference
to the superblock being moved (line H6). Furthermore, the only way to remove
the superblock reference from to is to successfully use another move operation
to move the superblock reference from to to another shared location. ¤

Lemma 6.4.3 (No pointer multiplication) Consider a superblock sb, a set
of shared locations s1, s2, . . . , sm and a set of Move operations Msb on sb, where,
initially, exactly one shared location s1 contains a reference to the superblock,
then: (i) after all moves of sb have finished there is exactly one shared reference
to sb; and (ii) at any given time there are no more than two shared references
to sb.

Proof: Since no new Move can begin before all previous ones concerning this
superblock have finished (by themselves or through helping) there will only be
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Algorithm 6.4 The superblock Move Help operation.
function Move Help(sb : in superblock ref t,

from : in pointer to superblock ref t,
to : in pointer to superblock ref t)

return status
old, new, res : superblock ref t; mi : move info t;

begin
/* Step 2: Update ”TO”. */

H1 old := *to;
H2 mi := Load Linked(&sb.mv info);
H3 if mi /= (version(sb), to, from) then

/* This operation has been helped to completion. */
H4 return SB MOVED;
H5 new := make sb ref(sb, version(old) + 1);
H6 res := CAS(to, make sb ref(null, version(old)), new)
H7 if res /= make sb ref(null, version(old)) and pointer(res) /= pointer(sb) then

/* To is occupied, abandon this operation. */
H8 mi := Load Linked(&sb.mv info);
H9 if mi == (version(sb), to, from) then
H10 mi := (0, null, from);
H11 Store Conditional(&sb.mv info, mi);
H12 return SB NOT MOVED;

/* Step 3: Clear ”FROM”. */
H13 CAS(from, sb, make sb ref(null, version(sb) + 1));

/* Step 4: Remove operation information.*/
H14 mi := Load Linked(&sb.mv info);
H15 if mi == (version(sb), to, from) then
H16 mi := (0, null, to);
H17 Store Conditional(&sb.mv info, mi);
H18 return SB MOVED OK;
end Move Help;

Algorithm 6.5 The superblock Strict Dereference operation.
function Strict Dereference(loc : in pointer to superblock ref t)
return superblock ref t

sb : superblock ref t; mi : move info t;
begin
SD1 loop
SD2 sb := *loc;
SD3 if pointer(sb) == null then return sb;
SD4 mi := Load Linked(&sb.mv info);
SD5 if mi.new pos == null then
SD6 return sb;
SD8 else

/* Help ongoing move operation to finish. */
SD9 Move Help(sb, mi.cur pos, mi.new pos);
end Strict Dereference;
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Algorithm 6.6 The superblock operations Get block and Put Block .
function Get Block(sb : in pointer to superblock t) return pointer to block t

nb : block ref t;
begin
GB1 loop
GB2 nb := sb.freelist head;
GB3 if pointer(nb) /= null then
GB4 if CAS(&sb.freelist head, nb, make ref(nb.next, version(nb) + 1)) then
GB5 FAA(&sb.free block cnt, -1);
GB6 return pointer(nb);
GB7 else
GB8 return null;
end Get Block;

procedure Put Block(sb : in pointer to superblock t, bl : in pointer to block t)
oh : block ref t;

begin
PB1 loop
PB2 oh := sb.freelist head;
PB3 bl.next := pointer(oh);
PB4 if CAS(&sb.freelist head, oh, make ref(bl, version(oh) + 1)) then
PB5 FAA(&sb.free block cnt, 1);
PB6 return;
end Put Block;



6.4. MANAGING SUPERBLOCKS 143

one shared reference when a move begins and the move itself creates at most
one more during its execution. ¤

Lemma 6.4.4 (Strict Dereference I) The operation Strict Dereference always
returns a superblock that was stable (i.e. there was no move operation concern-
ing that superblock) at some time instant during the operation’s duration.

Proof: Strict Dereference will only return a superblock reference that was stable
at line SD4 when its mv info was read by construction. If the reference was
unstable at that point Strict Dereference attempts to help the ongoing Move
(line SD9) and continues for another iteration of the loop. ¤

Lemma 6.4.5 (Strict Dereference II) The operation Strict Dereference is lock-
free.

Proof: There is only one loop in Strict Dereference and none in Move Help. For
a Strict Dereference to remain in the loop it needs to read a non-null superblock
reference from loc (line SD2) and, further, find that the referenced superblock is
unstable (line SD5). If the referenced superblock is unstable Strict Dereference
will make it stable by the Move Help operation that finishes an ongoing Move
operation. So, in the next iteration loc is either: (i) null, if the move operation
was moving the superblock from loc; or (ii) references the now stable superblock;
in both these cases will Strict Dereference terminate. However, loc could also
contain a reference to a different (unstable or stable) superblock that could force
Strict Dereference to do another iteration. But in that case, clearly, some other
concurrent operation (i.e. the one that wrote the new value into loc) has made
progress, so it is acceptable for Strict Dereference not to make progress. ¤

The flat-set Insert and Get Any operations

Lemma 6.4.6 (Flat-set I) A successful Get Any(s, sb, loc) returns a superblock
that was stable in the flat-set at some time instant during the duration of the
Get Any operation.

Proof: Get Any uses Strict Dereference to read the reference it returns (line
G7). The lemma then follows from Lemma 6.4.4. ¤

Lemma 6.4.7 (Flat-set II) A superblock is stable in at most one flat-set at
any time instant.

Proof: Since superblocks are always moved by applying the Move operation
the Lemma follows from Lemma 6.4.1, Lemma 6.4.3 and the definition of stable.

¤
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Lemma 6.4.8 (Flat-set III) When a superblock sb is being moved from one
flat-set A to another B by a Move operation no search operation (i.e. Get Any)
on A can find, by executing Strict Dereference, sb location in A empty before sb
can be found stable in B, also by a Strict Dereference.

Proof: Consider the Strict Dereference on sb’s location in A, (denote that loca-
tion lA and the new location in B lB). According to the Lemma is must return
null. There are two cases:
(i) Strict Dereference read null from lA (line SD2). But Move updates lB (step
2) before clearing lA (step 3), so a Strict Dereference on to lB at this time will
return sb (ii) Strict Dereference read the reference to the unstable sb from lA.
In this case Strict Dereference will itself execute Move Help on sb, thus making
sb stable at the new location lB before returning anything. ¤

6.5 Managing the blocks within a superblock

The allocatable memory blocks within each superblock are kept in a lock-
free IBM free-list [IBM83]. The IBM free-list is essentially a lock-free stack
implemented from a single-linked-list where the push and pop operations are
done by a CAS operation on the head-pointer. To avoid ABA-problems the
head-pointer contains a version field. Each block has a header containing a
pointer to the superblock it belongs to and a next pointer for the free-list. The
two free-list operations Get Block and Put Block are shown in Algorithm 6.6.
The free blocks counter, sb.free block cnt, is used to estimate the fullness of a
superblock.

6.6 Interacting with NBmalloc

The user application interacts with the memory allocator via the two op-
erations: malloc , to make a memory request, and free, to release previously
allocated memory.

These two operations together with the main global data structures of the
memory allocator are shown in Algorithm. 6.7. The Global Heap structure con-
sists of an array of flat-set, one for each size-class, which contains all empty or
nearly empty superblocks in the system (cf. also Figure 6.2(a)). A per-processor
heap is a two dimensional array of flat-sets indexed by size-class and superblock
fullness group.

A memory request malloc call for a memory block of a certain size-class sc
will first search the flat-sets for the required size-class in the appropriate per-
processor heap for a superblock with a free block. The search begins in the
flat-set for the “almost full” fullness-group. If no suitable superblock is found
there, the search proceeds to search in the lower fullness-groups (lines A1 to A7
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in Algorithm 6.7). Searching in the almost full superblocks set first is a strategy
to reduce external fragmentation, since it allows less full superblocks in the per-
processor to get fewer allocation requests and in time become empty enough
to be moved to the global heap. If no superblock with a free block is found in
the per-processor heap, malloc will attempt to get a new superblock from the
Global Heap (line A9) and move it to the per-processor heap (line A10). If such
a superblock is found then malloc tries to allocates a block from it. If no such
superblock is found the system is out of memory for this size-class and malloc
will return null.

The operation free is used by the application to return a no longer needed
block of memory to the memory allocator. The operation uses the owner field
of the block header to find the superblock it belongs to. When the block is
returned to the superblock (line F1) the superblock might need to be moved to
a different fullness-group or, if it has become almost empty, to the global heap.
To be able to move the superblock, its current location is needed. The location
is read from the mv info field in the superblock (line F4) and the superblock is
then moved at line F9 or F11. The test at line F7 makes sure that it is the right
superblock that is going to be moved – the superblock in question could have
been removed from sbr between line F4 and F6 by some concurrent operation.

6.7 Performance evaluation

6.7.1 Systems

There are two major families of cache-coherent multiprocessor architectures –
UMA (Uniform Memory Architecture) and NUMA (Non-Uniform Memory Ar-
chitecture). In a UMA system all processors have the same latency to the
memory. In a NUMA system, this is not the case, since access to memory on
another node can be significantly slower.

The performance of the new lock-free allocator has been measured on a three
multiprocessor systems, both on UMA and NUMA memory architectures. The
three systems are

• (i) an UMA Sun Sun-Fire 880 with 6 900MHz UltraSPARC III+ (4MB
L2 cache) processors running Solaris 9;

• (ii) a ccNUMA SGI Origin 2000 with 30 250Mhz MIPS R10000 (4MB L2
cache) processors running IRIX 6.5;

• (iii) a PC with 2 2.80GHz Intel Xeon (512KB L2 cache) processors running
Linux 2.6.9-22 SMP.

6.7.2 Benchmarks

We used three common benchmarks to evaluate our memory allocator:
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Algorithm 6.7 The malloc and free operations.
Global Heap : global shared array [SIZE CLASSES] of flat-set t;
type per-processor heap t is array

[SIZE CLASSES] [MIN FULLNESS .. MAX FULLNESS] of flat-set t;

function malloc(sc : in size class) return pointer to block t
heap : pointer to per-processor heap t := select heap(thread id);
sb : superblock ref t; sbr : pointer to superblock ref t;
bl : block ref t:= null;

begin
A1 for fg := MAX FULLNESS - 1 .. MIN FULLNESS do
A2 while Get Any(heap[sc][fg], sb, sbr) = SUCCESS do
A3 bl := Get Block(pointer(sb));
A4 if bl /= null then
A5 exit for loop;
A6 else

/* Move the full superblock out of the way. */
A7 Insert(heap[sc][MAX FULLNESS], sb, sbr);
A8 while bl == null loop

/* Move a superblock from the global heap to the per-processor heap. */
A9 if Get Any(Global Heap[sc], sb, sbr) then
A10 if SB MOVED OK == Insert(heap[sc][MIN FULLNESS], sb, sbr) then
A11 bl := Get Block(pointer(sb));
A12 else
A13 return null; /* Out of memory. */
A14 if fullness(sb) /= fg then /* Move the superblock to the right fullness group. */
A15 Insert(heap[sc][fullness(sb)], sb, sbr);
A16 return bl;
end malloc;

procedure free(bl : in pointer to block t)
sbp : pointer to superblock t := bl.owner;
heap : pointer to per-processor heap t := sbp.owner;
newfg, oldfg : fullness group := fullness(sbp);
mv info : move info t; sb : superblock ref t; sbr : pointer to superblock ref t;

begin
F1 Put Block(sbp, bl);
F2 newfg := fullness(sbp);
F3 if newfg 6= oldfg then
F4 mv info := Load Linked(&sbp.mv info);
F5 sbr := mv info.cur pos;
F6 sb := *sbr;
F7 if pointer(sb) == sbp then
F8 if newfg == empty or almost empty then
F9 Insert(Global Heap[sc], sb, sbr);
F10 else
F11 Insert(heap[sc][newfg], sb, sbr);
end free;
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• The Larson [BMBW00, Ber02, LK98] benchmark simulates a multi-threaded
server application that makes heavy use of dynamic memory. Each thread
allocates and deallocates objects of random sizes (between 5 to 500 bytes)
and also transfers some of the objects to other threads to be deallocated
there. The benchmark result is throughput in terms of the number of
allocations and deallocations per second, which reflects the allocator’s be-
haviour with respect to false-sharing and scalability, and the resulting
memory footprint of the process which should reflect any tendencies for
heap blowup. We measured the throughput during 60 second runs for
each set of threads.

• The Active-false and passive-false [BMBW00, Ber02] benchmarks mea-
sure how the allocator handles active (i.e. directly caused by the allocator)
respective passive (i.e. caused by application behaviour) false-sharing. In
the benchmarks each thread repeatedly allocates an object of a certain
size (1 byte) and read and write to that object a large number of times
(1000) before deallocating it again. If the allocator does not take care to
avoid false-sharing, several threads might get objects located in the same
cache-line and this will slow down the reads and writes to the objects con-
siderably. In the passive-false benchmark all initial objects are allocated
by one thread and then transfered to the others to introduce the risk of
passive false-sharing when those objects are later freed for reuse by the
threads. The benchmark result is the total wall-clock time for performing
a fixed number (106) of allocate-read/write-deallocate cycles among all
threads.

6.7.3 Implementation

In our memory allocator2 we use the CAS primitive (implemented from the
hardware synchronization instructions available on the respective system) for
our lock-free operations. To avoid ABA problems we use the version number
solution ([Val95b], cf. section 6.2.2). We use 16-bit version numbers for the
superblock references in the flat-sets. The reason is that for a bad event (i.e.
that a CAS of a superblock reference succeeds when it should not) to happen
not only must the version numbers be equal but also that same superblock
must have been moved back to the same location in the flat-set, which contains
thousands of locations. We use superblocks of 64KB and this leaves enough
space for version numbers in superblock pointers. We also use size-classes that
are powers of two, starting from 8 bytes. This is not a decision forced by the
algorithm; a more tightly spaced set of size-classes can also be used; this would
impose some extra fixed space overhead due to the preallocated flat-sets for
each size-class, but it would also further reduce internal fragmentation. Blocks
larger than 32KB are allocated directly from the operating system instead of
being handled in superblocks. Our implementation uses four fullness-groups
and a fullness-change-threshold of 1

4 , i.e. a superblock is not moved to a new

2Our implementation is available at http://www.cs.chalmers.se/∼dcs/nbmalloc.html .
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group until its fullness is more than 1
4 outside its current group. This prevents

superblocks from rapidly oscillating between fullness-groups. Further, we set
the maximum size for the flat-sets used in the global heap and for those in
per-processor heaps to 4093 superblocks each (these values can be adjusted
separately).

6.7.4 Results

In the evaluation we compare our allocator with the standard “libc” allocator of
the respective platform using the above standard benchmark applications. On
the Sun platform, for which we had the original Hoard allocator available, we
also compare with Hoard (version 3.4.0). To the best of our knowledge, Hoard
is not available for ccNUMA SGI IRIX platforms. Note that on the PC/Linux
platform, the default “libc” malloc is in fact Ptmalloc, a lock-based concurrent
memory allocator with private per-processor heaps by Gloger [Glo03].

The benchmarks are intended to test scalability, fragmentation and false-
sharing behaviour, which are the evaluation criteria of a good concurrent al-
locator, as explained in the introduction. When performing these experiments
our main goal was not to optimize the performance of the lock-free allocator,
but rather to examine the benefits of the lock-free design itself. There is plenty
of room for optimization of the implementation.

The results from the two false-sharing benchmarks, shown in Figures 6.3
- 6.5 and Figures 6.6 - 6.8, respectively, show that our memory allocator and
Hoard, induce very little false-sharing. The standard “libc” allocator, on the
other hand, suffers significantly from false-sharing as shown by its longer and
irregular runtimes. For “libc” false-sharing causes the largest slowdown when
there are few but fully concurrent threads, as they are the most likely to get
objects in the same cache-line and also access them concurrently. When the
number of threads gets larger, objects are more likely to be in different cache-
lines and also, due to time-sharing, not all threads execute at the same time.

An important observation throughout the experiments is that NBmalloc shows
consistent behaviour as the number of processors and memory architectures
change.

The throughput results from the Larson benchmark, shown in Figures 6.9 -
6.11, show that our lock-free memory allocator has good scalability, not only in
the case of full concurrency (where Hoard also shows excellent scalability), but
also when the number of threads increases beyond the number of processors. In
that region, Hoard’s performance quickly drops from its peak at full concurrency
on the Sun (cf. Figure 6.10) and slowly on the PC (cf. Figure 6.9).

We can actually observe more clearly the scalability properties of the lock-
free allocator in the performance diagrams on the SGI Origin 2000 platform
(Figure 6.11). We can observe a linear-style of throughput increase when the
number of processors increases (when studying the diagram recall we have 30
processors available in the Origin 2000). Furthermore, when the load on each
processor increases beyond 1 thread, the throughput of the lock-free allocator
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Figure 6.3: The Active-False benchmark: PC with 2 Intel Xeon CPUs.
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Figure 6.4: The Active-False benchmark: Sun with 6 UltraSPARC III+ CPUs.
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Figure 6.7: The Passive-False benchmark: Sun with 6 UltraSPARC III+ CPUs.
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Figure 6.9: The Larson benchmark: Throughput on a PC with 2 Intel Xeon
CPUs.

stays high, as is desirable for scalability. In terms of absolute throughput, Hoard
is superior to NBmalloc on the Sun platform where we had the possibility to
compare them. This is not surprising, considering that it is very well designed
and has been around enough time to be well tuned. It is interesting to note that
on the PC/Linux platform the situation is reversed and except for the sequential
case NBmalloc has higher throughput than both Hoard and Ptmalloc/glibc.

An interesting conclusion is that the scalability of Hoard’s architecture is
further enhanced by lock-free synchronization.

The results with respect to memory consumption, in Figures 6.12 - 6.14,
show that for the Larson benchmark the memory usage (and thus fragmentation)
of the non-blocking allocator stays at a similar or better level than Hoard (cf.
Figure 6.12 and 6.13). Moreover, the use of per-processor heaps with thresholds,
while having a larger overhead than the “libc” allocator, still have almost as
good scalability with respect to memory utilization as a single heap allocator.

Moreover, that our lock-free allocator shows a very similar behaviour in
throughput on both the UMA and the ccNUMA systems is an indication that
there are few contention hot-spots, as these tend to cause much larger perfor-
mance penalties on NUMA than on UMA architectures.

6.8 Other related work

Recently Michael presented a lock-free allocator [Mic04c] that, like our contri-
bution, is loosely based on the Hoard architecture. Our work and Michael’s
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Figure 6.10: The Larson benchmark: Throughput on a Sun with 6 UltraSPARC
III+ CPUs.
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Figure 6.12: The Larson benchmark: Average memory consumption on a PC
with 2 Intel Xeon CPUs.
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Figure 6.13: The Larson benchmark: Average memory consumption on a Sun
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Figure 6.14: The Larson benchmark: Average memory consumption on a SGI
Origin 2000 with 30 MIPS 10k CPUs.

have been done concurrently and independently, an early version of our work is
in the technical report [GPT04]. Despite both having started from the Hoard
architecture, we have used two different approaches to achieve lock-freedom. In
Michael’s allocator each per-processor heap contains one active (i.e. used by
memory requests) and at most one inactive partially filled superblock per size-
class, plus an unlimited number of full superblocks. All other partially filled
superblocks are stored globally in per-size-class FIFO queues. It is an elegant
algorithmic construction, and from the scalability and throughput performance
point of view it performs excellently, as is shown in [Mic04c], in the experiments
carried out on a 16-way POWER3 platform. By further studying the allocators,
it is relevant to note that: Our allocator and Hoard keep all partially filled su-
perblocks in their respective per-processor heap while the allocator in [Mic04c]
does not and this may increase the potential for inducing false-sharing. Our
allocator and Hoard also keep the partially filled superblocks sorted by fullness
and not doing so, like the allocator in [Mic04c] does, may imply some increased
risk of external fragmentation since the fullness order is used to direct allocation
requests to the more full superblocks which makes it more likely that less full
ones becomes empty and thus eligible for reuse. The allocator in [Mic04c], unlike
ours, uses the first-remove-then-insert approach to move superblocks around,
which in a concurrent environment could affect the fault-tolerance of the al-
locator and cause unnecessary allocation of superblocks since a superblock is
invisible to other threads while it is being moved.

As this is work that has been carried out concurrently and independently
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with our contribution, we do not have any measurements of the impact of the
above differences, however this is interesting to do as part of future work, to-
wards further optimization of these allocators.

Another allocator that reduces the use of locks is LFMalloc [DG02]. It uses a
method for almost lock-free synchronization, whose implementation requires the
ability to efficiently manage CPU-data and closely interact with the operating
system’s scheduler. To the best of our knowledge, this possibility is not directly
available on all systems. LFMalloc is also based on the Hoard design, with the
difference in that it limits each per-processor heap to at most one superblock of
each size-class; when this block is full, further memory requests are redirected to
the global heap where blocking synchronization is used and false-sharing is likely
to occur. However, a comparative study with that approach can be worthwhile,
when it becomes available for experimentation.

Earlier related work is the work on non-blocking operating systems by Mas-
salin and Pu [MP91, Mas92] and Greenwald and Cheriton [GC96, Gre99]. They,
however, made extensive use of the 2-Word-Compare-And-Swap primitive in their
algorithms. This primitive can update two arbitrary memory locations in one
atomic step but is not available in current systems and expensive to do in soft-
ware.

6.9 Discussion and future work

The lock-free memory allocator proposed in this paper confirms our expectation
that fine-grain, lock-free synchronization is useful for scalability under increasing
load in the system. To the best of our knowledge, this, together with the
allocator that was independently presented in [Mic04c] are also the first lock-
free general allocators (based on single-word CAS) in the literature. We expect
that this contribution will have an interesting impact in the domain of memory
allocators.

In the future we plan to generalize of the method for “inter-object” opera-
tions, which is illustrated here in the move operation. A general methodology
in this direction would enable combinations of known lock-free data structures
(e.g. list-structures) into larger, interconnected ones, to be integrated in systems
such as the one studied here.
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Chapter 7

LFthreads: A lock-free
thread library or “Blocking
without locking”1

Anders Gidenstam Marina Papatriantafilou

Abstract

This paper presents LFthreads, a thread library whose synchronization is entirely

based on lock-free techniques, which means that no spin-locks or similar synchroniza-

tion mechanisms are employed in the implementation of the multithreading. This

implies that processors are always able to do useful work. It is achieved by a synchro-

nization mechanism that does not need any special kernel support. Since lock-freedom

is highly desirable in multiprocessors due to its advantages in performance, fault-

tolerance, convoy- and deadlock-avoidance, there is an increased demand in lock-free

methods in multiprocessor applications, hence also in multiprocessor system services.

This is why the existence of a lock-free multithreading library is important. To the

best of our knowledge LFthreads is the first thread library that provides a lock-free

implementation of a blocking synchronization primitive for application threads.

Keywords: lock-free, multithreading, synchronization, shared memory.

7.1 Introduction

Multiprogramming and threading is a fundamental part of modern operating
systems. It allows the processor to be shared by several applications efficiently.

1This is chapter is an extended version of the Technical Report 2005:20, Computer Science
and Engineering, Chalmers University of Technology, 2005
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In this paper we study the problem of implementing multithreading on a mul-
tiprocessor or multi-core system from the point of view that a processor should
never be forced to wait for some action that should be performed by another
processor. This means that we cannot use spin-locks or any other locking syn-
chronization mechanism in the implementation of the multithreading. The ra-
tionale is that a processor should always be able to do useful work.

Synchronization mechanisms that do not use spin-locks or other locking
methods are distinguished into lock-free and wait-free. Lock-free synchroniza-
tion guarantees that in a set of concurrent operations at least one of them makes
progress each time and thus eventually completes, while wait-free synchroniza-
tion guarantees that every operation finishes in a finite number of its own steps
regardless of the actions of concurrent operations. The correctness condition for
lock-free and wait-free constructions is atomicity, a.k.a. linearizability [HW90].
An execution is atomic or linearizable if it guarantees that even when operations
overlap in time, each of them appears to take effect at an atomic time instant
that lies within its respective time duration, such that the effect of each opera-
tion is consistent with its corresponding operation in a sequential execution in
which the operations appear in the same order.

Lock-free/wait-free synchronization is attractive in multiprocessor and multi-
core systems as it offers significant advantages over lock-based synchronization
schemes, because: (i) it does not give rise to priority inversion; (ii) it avoids lock
convoys; (iii) it provides higher fault tolerance (processor stop failures will not
corrupt shared data objects); and (iv) it eliminates deadlock scenarios involving
two or more processes both waiting for locks held by the other. Due to these
facts there is extended research literature on lock-free/wait-free synchronization
(c.f. [Sun04a] for an overview) as well as on universal methods to transform lock-
based constructions into lock-free/wait-free ones (e.g. [Bar93, Her93, TSP92]).
Besides ensuring the above qualitative properties, it has also been shown, us-
ing well-known parallel applications, that lock-free methods imply at least as
good performance as lock-based ones, and in many cases significantly better
[TZ01a, TZ02].

For all the above, lock-free synchronization is desirable in multiprocessors
applications, hence also at the operating system level and runtime system level.
There has been work at the operating system kernel level [MP91, Mas92, GC96,
Gre99], where basic kernel data structures have been replaced with lock-free
ones with both performance and quality benefits. Besides, the NOBLE library
project [ST02] provides implementation of a large range of data structures us-
ing lock-free methods, while there is an increasing interest on projects that aim
at providing support for non-blocking programming, e.g. the Software Trans-
actional Memory package for C#[Her06]. There is also extensive interest and
results on lock-free methods for memory management (garbage collection, mem-
ory allocation, e.g. [Val95b, MS95, DMMS01, Mic04c, GPST05, GPT05]).

In the research literature on multithreading, a special kernel-level mecha-
nism, called scheduler activations, has been proposed [ABLL92], to enable user-
level threads to offer the functionality of kernel-level threads and also leave no
processor idle in the presence of ready threads. In a further study [FCL93]
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it was shown that application-controlled blocking and interprocess communica-
tion can be resolved at user-level without modifications to the kernel to achieve
the same goals as above, but multiprogramming demands and blocking, such
as for page-faults, need scheduler activations to do the same. Further, there
is extensive research literature on efficiently utilizing computational resources
in multithreading systems. To mention several relevant and motivating ex-
amples: [BL94] focuses on scheduling with work-stealing, as a method to have
enough threads active to keep processors busy, meeting also memory constraints;
[ZLE91] studied methods of scheduling to reduce the amount of spinning in mul-
tithreading; [ZS97] focuses on demands in real-time and embedded systems and
studies methods for efficient, low-overhead semaphores. Moreover, [ON01] aims
at introducing lock-freedom in multithreading and proposes a scheduling mech-
anism that does not require locking, that is used in their multithreading library
called Lesser Bear.

Here we present a lock-free thread library, LFthreads. In LFthreads
there are no spin-locks or similar synchronization mechanisms employed in the
implementation of the multithreading. The lock-freedom of the thread library
implementation implies that a processor is always able to continue doing use-
ful work, despite other processors suffering stop failures or delays (e.g. from
interrupts caused by page-faults or I/O devices). To do this, we introduce a
new synchronization method, which we call hand-off, which may also be use-
ful in other lock-free synchronization constructions. Further, the method uses a
lock-free queue data structure and standard kernel operations to manage thread
execution contexts, without need for scheduler activations. Since lock-freedom
is highly desirable in multiprocessors due to its advantages in performance,
fault-tolerance, convoy- and deadlock-avoidance, there is an increased demand
in lock-free methods in multiprocessor applications, hence also in multiproces-
sor system services, to retain the lock-free properties even at system level. This
is why the existence of a lock-free multithreading library is important. To the
best of our knowledge LFthreads is the first library that provides a lock-free
implementation of a blocking synchronization primitive for application threads.
Even a lock-free thread library needs to provide mutual exclusion objects, e.g.
for legacy applications and for other applications where threads might need to
be blocked, e.g. to interact with some external device. Our hand-off synchro-
nization method in LFthreads allows the mutual exclusion object to block
application threads without enforcing mutual exclusion among the processors
executing the threads.2

In the paper we first present the system model (section 7.2), then the appli-
cation programming interface of LFthreads (section 7.3), the detailed descrip-
tion including the algorithmic design of the synchronization in LFthreads (sec-
tion 7.4), the correctness of the above (section 7.5), and finally the implemen-
tation and an experimental study of the behaviour of the library (section 7.6).
We conclude in section 7.7.

2Note that an application that uses the mutual exclusion objects still needs to take care
to avoid deadlocks among its threads.
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function CAS(address : pointer to word;
oldvalue : word; newvalue : word) : boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

function FAA(address: pointer to integer;
increment: integer): integer

atomic do
ret := *address;
*address := ret + increment;
return ret;

Figure 7.1: The Compare-And-Swap (CAS) and Fetch-And-Add (FAA) atomic
primitives.

7.2 System model

We consider shared memory multiprocessor systems. The system consists of a
set of processors, each having its own local memory as well as being connected
to a shared memory through an interconnect network. Each processor executes
instructions sequentially at an arbitrary rate. The shared memory might not
be uniform, that is, for each processor the latency to access some part of the
memory is not necessarily the same as the latency for any other processor to
access that part of the shared memory. The shared memory supports atomic
read and write operations of any single memory word, and also stronger single-
word synchronization primitives, such as Compare-And-Swap (CAS) and Fetch-
And-Add (FAA) (see Figure 7.1) which are used in the algorithms in this paper.
These synchronization primitives are either available or can easily be derived
from other available synchronization primitives [Jay98, Moi97] on most (more
advanced) contemporary microprocessor architectures.

The processors in the system cooperate to run a set of application threads,
where each thread consists of a sequence of operations and communication is
accomplished via shared-memory operations.

7.3 LFthreads’s application programming inter-
face

The lock-free thread library defines the following functions for thread handling:
procedure create(thread : out thread t; main : in pointer to procedure);
procedure exit();
procedure yield();
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Procedure create creates a new thread which will start in the procedure main.
Procedure exit terminates the calling thread and if this was the last thread of
the application/process it is terminated as well. Procedure yield causes the
calling thread to be put on the ready queue and the (virtual) processor that it
was running on to pick a new thread to run from the ready queue.

For applications that need lock-based synchronization between threads the
thread library provides a mutex object with the following operations:
procedure lock(mutex : in out mutex t)
procedure unlock(mutex : in out mutex t)
function trylock(mutex : in out mutex t): boolean

Procedure lock attempts to lock the mutex. If the mutex is locked already
the calling thread is blocked and enqueued on the waiting queue of the mutex.
Function trylock attempts to lock the mutex. If it succeeds in locking the mutex
true is returned, otherwise false. Procedure unlock unlocks a mutex if there are
no threads waiting in the mutex’s waiting queue, otherwise the first of the
waiting threads are removed from the waiting queue and made runnable. That
thread is now the owner of the mutex. Only the thread that has locked the
mutex may call unlock .

7.4 Detailed description of the LFthreads li-
brary

7.4.1 Data structures and global variables

In Algorithm 7.1 the data structures used to implement the thread library are
presented. We assume that we have a data type, context t, where the CPU
context of an execution (i.e. thread) can be stored and some operations to
manipulate such contexts. These operations, which can be supported by most
common operating systems3, are:
(i) save which stores the state of the current CPU context in the supplied vari-
able and switches processor to a new special stack. There is one such stack
available for each processor. The return value from save is true when the con-
text is stored and false when the context is restored.
(ii) restore which loads the supplied stored CPU context onto the processor.
The restored context continues execution in the (old) call to save, returning
false. The CPU context that made the call to restore is lost (unless it was saved
before the call to restore).
(iii) make context which creates a new CPU context in the supplied variable.
The new context will start in a call to the supplied procedure main when it is
loaded onto a processor with restore.

Each thread in the system will be represented by an instance of the thread
control block data type, thread t, which contains a context t variable that stores

3For example in systems conforming to the Single Unix Specification v2 (SUSv2 ) they
can be implemented from getcontext(2), setcontext(2) and makecontext(3), while in other
Unix systems setjump(3) and longjmp(3) or similar could be used.
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Algorithm 7.1 The thread context type, the thread control block type and the
lock-free queue type and their operations used in LFthreads.
type context t is record 〈implementation defined〉;
function save(context : out context t): boolean;
/* Saves the current CPU context and switches to the
* a separate stack. The call to save returns true when
* the context is saved and false when it is restored. */
procedure restore(context : in context t);
/* Replaces the current CPU context with a
* previously stored CPU context.
* The current context is destroyed. */
procedure make context(context : out context t;

main : in pointer to procedure);
/* Creates a new CPU context which will wakeup
* in a call to the procedure main when restored. */

type thread t is record
uc : context t;

type lf queue t is record 〈implementation defined〉;
procedure enqueue(queue : in out lf queue t;

thread : in pointer to thread t);
/* Places the thread control block thread last in the queue. */
function dequeue(queue : in out lf queue t;

thread : out pointer to thread t): boolean;
/* If the queue is not empty the first thread t pointer in the queue
* is dequeued and true is returned. Returns false if the queue is empty. */
function is empty(queue : in out lf queue t): boolean;
/* Returns true if the queue is empty, and false otherwise. */

the thread’s state when it is not being executed on one of the processors.

Further, we also assume that we have a lock-free queue data structure (like
e.g. [TZ01b]) for pointers to thread control blocks; the queue supports three
lock-free and linearizable operations: enqueue, dequeue and is empty (each with
its intuitive semantics). The lock-free queue data structure is used as a building
block in the implementation of LFthreads. However, as we will see in de-
tail below, additional synchronization methods are needed to make operations
involving more than one queue instance lock-free and linearizable.

The global and local variables needed are shown in Algorithm 7.2. The
persistent global and per-processor variables consist of the global Ready Queue,
which contains all runnable threads that are not currently being executed by any
processor, and the per-processor persistent variable Current, which contains a
pointer to the thread control block of the thread that is currently being executed
on that particular processor.
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Algorithm 7.2 The variables used in LFthreads.
/* Global shared variables. */
Ready Queue : lf queue t;

/* Private per-processor persistent variables. */
Currentp : pointer to thread t;

/* Local temporary variables. */
next : pointer to thread t;
old count : integer;

Algorithm 7.3 The basic thread operations in LFthreads.
procedure create(thread : out thread t;

main : in pointer to procedure)
C1 make context(thread.uc, main);
C2 enqueue(Ready Queue, thread);

procedure yield()
Y1 if not is empty(Ready Queue) then
Y2 if save(Currentp.uc) then
Y3 enqueue(Ready Queue, Currentp);
Y4 cpu schedule();

procedure exit()
E1 cpu schedule();

procedure cpu schedule()
CI1 loop
CI2 if dequeue(Ready Queue, Currentp) then
CI3 restore(Currentp.uc);
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Algorithm 7.4 The lock-free mutex data type in LFthreads.
type mutex t is record

waiting : lf queue t;
count : integer := 0; /* UNLOCKED=0 unless hand-off is set. */
hand-off : boolean := false;

7.4.2 The thread operations in LFthreads

The general thread operations of LFthreads are shown in Algorithm 7.3, where
it is possible to see their interaction with the data structures and variables de-
scribed in the previous section. The thread handling operations, whose required
functionality was introduced in section 7.3, work as follows in LFthreads:
(i) The operation create creates a new thread control block, initializes the con-
text stored in the block and enqueues the new thread on the ready queue.
(ii) The operation exit terminates the thread currently being executed by this
processor, which then picks another thread to run from the ready queue.
(iii) The operation yield saves the context of the thread currently being exe-
cuted by this processor, enqueues this thread on the ready queue and then picks
another thread to run from the ready queue.

In addition to the public operations, there is an internal operation in LFthreads,
namely cpu schedule, which is used to select the next thread to load onto the
processor. If there are no threads waiting for execution in the Ready Queue, the
processor is idle and will spin waiting for a runnable thread to appear.

7.4.3 The mutex operations in LFthreads

To facilitate blocking mutual exclusion-based synchronization among applica-
tion threads, LFthreads provides a mutex primitive, mutex t. While the op-
erations on a mutex, lock , trylock and unlock , have their usual semantics for
the application threads, they are lock-free with respect to the processors in the
system. This implies a higher degree of fault-tolerance against stop and timing
faults in the system compared to a traditional spin-lock-based mutex implemen-
tation, since even if a processor is stopped or delayed in the middle of a mutex
operation all other processors are still able to continue performing operations
on the same mutex.

The mutex t structure, which is shown in Algorithm 7.4, consists of three
fields:

(i) an integer counter, which counts the number of threads that are in or want
to enter the critical section protected by the mutex;

(ii) a lock-free queue, where the thread control blocks of threads that want to
lock the mutex when it is already locked can be stored; and

(iii) a boolean hand-off flag, whose role and use will be described in detail in
this section.
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Algorithm 7.5 The lock-free mutex protocol in LFthreads.
procedure lock(mutex : in out mutex t)
L1 old count := FAA(&mutex.count, 1);
L2 if old count 6= 0 then

/* The mutex was locked. Help or run another thread. */
L3 if save(Currentp.uc) then
L4 enqueue(mutex.waiting, Currentp);
L5 if not CAS(&mutex.hand-off, true, false) then

/* The mutex is still busy. */
L6 cpu schedule(); /* We are done. */
L7 else /* We now own the mutex. Find a waiting thread to run. */
L8 loop
L9 if dequeue(mutex.waiting, Currentp) then
L10 restore(Currentp); /* Done. */
L11 else /* The waiting thread not ready. Initiate hand-off! */
L12 mutex.hand-off := true;
L13 if is empty(mutex.waiting) then /* It is safe to leave. */
L14 cpu schedule(); /* Done. */
L15 if not CAS(&mutex.hand-off, true, false) then
L16 cpu schedule(); /* Done. */

function trylock(mutex : in out mutex t): boolean
TL1 if CAS(&mutex.count, 0, 1) then return true;
TL2 else if CAS(&mutex.hand-off, true, false) then
TL3 FAA(&mutex.count, 1);
TL4 return true;
TL5 return false;

procedure unlock(mutex : in out mutex t)
U1 old count := FAA(&mutex.count, −1);
U2 if old count 6= 1 then /* There is at least one waiting thread. */
U3 loop
U4 if dequeue(mutex.waiting, next) then
U5 enqueue(Ready Queue, next);
U6 return;
U7 else /* The waiting thread is not ready yet! Initiate hand-off! */
U8 mutex.hand-off := true;
U9 if is empty(mutex.waiting) then

/* Some concurrent operation will see/or has seen the hand-off. */
U10 return;
U11 if not CAS(&mutex.hand-off, true, false) then
U12 return; /* Some concurrent operation acquired the mutex. */
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The operations on the mutex t structure are shown in Algorithm 7.5. In
rough terms, the lock operation locks the mutex and makes the calling thread
its owner. If the mutex is already locked the calling thread is blocked and
the processor switches to another thread. The blocked thread’s context will be
activated and executed later. In the ordinary case a blocked thread’s context is
activated by the thread releasing the mutex by invoking unlock , but due to fine-
grained synchronization, it may also happen in other ways. In particular, notice
that checking whether the mutex is locked and entering the mutex waiting queue
are distinct4 atomic operations. Therefore, the interleaving of thread-steps can
cause such situations that e.g. a thread A finds the mutex locked, but by the
time it has entered the mutex queue the mutex has been released, hence A should
not remain blocked and wait in the queue. The synchronization required for such
cases to be resolved is managed with the hand-off method. In particular, the
thread(/processor) that is releasing the mutex is able, using appropriate fine-
grained synchronization steps, to detect whether such a situation has occurred
and, in response, “hand-off” the ownership (or responsibility) for the mutex
to the other thread(/processor). By performing the hand-off, the processor
executing the unlock operation can finish this operation and continue executing
threads without needing to wait for the concurrent lock operation to finish
(and vice versa). As a result the mutex primitive in LFthreads can tolerate
arbitrary delays and even stop failures inside mutex operations without affecting
the other processors ability to do useful work (including performing operations
on the same mutex). However, do note that individual application threads
that use a mutex still have to wait if some other application thread has locked
it and that a faulty application still are able to dead-lock its threads. It is
the responsibility of the application developer to prevent such situations from
happening.

The details of the hand-off method are given in the description of the oper-
ations, below:

The lock operation: First, at line L1, the count of threads that want to
access the mutex is increased atomically using Fetch-And-Add. If the old value
was 0 the mutex was free and is now locked by the thread. If the old value
was not 0 then the mutex is likely to be locked and the current thread has to
block. At line L3 the context of the current thread is stored in its thread control
block and on line L4 the thread control block is enqueued in the mutex’s waiting
queue. From this point this invocation of lock is not associated with any thread.

However, the processor cannot just leave and do something else yet, because
in the meanwhile (since line L1), the thread that owned the mutex might have
unlocked it; this is checked by line L5. If the CAS at line L5 succeeds an unlock
operation has tried to unlock the mutex but found (line U2) that there is some
thread waiting to lock the mutex that has not yet appeared in the waiting

4The “traditional” way to avoid this problem is to ensure that only one processor at a time
modifies the mutex state, i.e. by enforcing mutual exclusion among the processors, e.g. by
using a spin-lock.
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queue (line U4) and therefore has set the hand-off flag (line U8). Since the lock
operation successfully acquired the hand-off flag it is now responsible for the
mutex and must find the thread that wants to lock the mutex. If that thread (it
might or might not be the one this lock operation enqueued) has now appeared
in the waiting queue its thread control block is dequeued and this processor
will proceed to execute it (line L9 - L10). If the thread has not yet appeared
in the waiting queue, the lock operation tries to get rid of its responsibility by
initiating a hand-off (line L12):
• The hand-off is successful if: (i) the waiting queue is still empty at line L13;

in that case either the offending thread has not yet been enqueued there
(in which case it has not yet checked for hand-offs) or it has in fact already
been dequeued (in which case some other processor took responsibility for
the mutex); or if (ii) the attempt to retake the hand-off flag at line L15
fails, in which case some other processor has taken responsibility for the
mutex. After a successful hand-off the processor leaves the lock operation
and proceeds to execute a thread fetched from the Ready Queue.

• If the hand-off is unsuccessful, i.e. the CAS at line L15 succeeds, then this
processor is still responsible for the mutex and needs to retry. Note that
if the hand-off is unsuccessful, then some other concurrent lock operation
made progress, namely by completing an enqueue on the waiting queue
(otherwise this lock would have completed at line L13 and L14).

The trylock operation: It will lock the mutex and return true if the mutex
was unlocked otherwise it does nothing and returns false. The operation first
tries to lock the mutex by increasing the waiting count on line TL1. This
will only succeed if the mutex was unlocked and there were no ongoing lock
operations. If there are ongoing lock operations or some thread has locked the
mutex, trylock will attempt to acquire the hand-off flag. This might succeed if
the thread owning the mutex is trying to unlock it and did not find any thread
in the waiting queue. If the trylock operation succeeds in acquiring the hand-off
flag then it becomes the owner of the mutex and increases the waiting count at
line TL3 before returning true. Otherwise trylock returns false.

The unlock operation: It unlocks the mutex if there are no waiting threads.
If there are waiting threads, one of them is made owner of the mutex and is
activated by being enqueued on the Ready Queue. The operation begins by
decreasing the waiting count at line U1, which was increased when this thread
called lock or trylock to lock the mutex. If the count becomes 0, then there are
no waiting threads and the unlock operation is done. Otherwise, there is at least
one thread wanting to acquire the mutex. If that thread has been enqueued in
the waiting queue, it is dequeued (line U4) and moved to the Ready Queue (line
U5) which completes the unlock operation. It the waiting queue is empty, the
unlock operation initiates a hand-off to get rid of the responsibility for the mutex
(line U8). The hand-off is handled in the same way as in the lock operation, the
only difference is that the unlock operation is completed by a return-statement
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instead of by calling cpu schedule.

7.5 Correctness of synchronization in LFthreads

To prove the correctness of the thread library we will first show that the mu-
tex operations are lock-free and linearizable with respect to the processors and
then that the lock-free mutex implementation satisfies the conditions for mutual
exclusion with respect to the behaviour of the application threads.

We start with (i) defining some notation that will facilitate the presentation
of the arguments and (ii) establishing some lemmas that will be used later to
prove the safety, liveness, fairness and atomicity properties of the algorithm.

Definition 7.5.1 A thread’s call to a blocking operation Op is said to be com-
pleted when the processor executing the call leaves the blocked thread and goes on
to do something else (like executing another thread). The call is said to have re-
turned when the thread (after becoming unblocked) continues its execution from
the point of the call to Op.

A mutex m is locked when calls to lock on it block the calling thread and
calls to trylock return False.

When a thread τ ’s call to lock on a mutex m returns we say that thread τ has
locked or acquired the mutex m. Similarly, we say that thread τ has locked or
acquired the mutex m when the thread’s call to trylock on the mutex m returns
True .

Further, when a thread τ has acquired a mutex m by a lock or successful
trylock operation and not yet released it by calling unlock we say that the thread
τ is the owner of the mutex m (or that τ owns m).

Lemma 7.5.1 A mutex m is locked if and only if m.count 6= 0 and m.hand-
off = False.

Proof: If m.count = 0 then, clearly, the mutex is not locked as a call to lock
returns after line L2 and a call to trylock returns True at line TL1.

Assume towards a contradiction that the mutex is locked and m.count 6= 0
and m.hand-off = True. Now, consider a call to trylock . It would return True
because the CAS at line TL2 succeeds so the mutex is not locked and we have
a contradiction. Similarly, A call to lock would save the thread’s context and
enqueue it on the waiting queue and then succeed with the CAS at line L5 and
go on to (try to) dequeue and run this waiting thread, thus letting it become
the owner of the mutex.

If, on the other hand, m.count 6= 0 and m.hand-off = False then trylock
would return False at line TL5 since both CAS fails and lock would save and
enqueue the thread’s context on the m.waiting queue (lines L3-L4) and then let
the processor continue with other work (line L6), thus leaving the calling thread
blocked. ¤
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Lemma 7.5.2 The value of the m.count variable is always greater than zero
when a thread owns the mutex m.

Proof: Note that m.count is increased by one for each lock (line L1) and
each successful trylock (line TL1 or TL3) operation and it is decreased by one
for each unlock operation (line U1). Therefore, m.count cannot be zero unless
the number of calls to unlock is the same as the number of calls to lock and
successful calls to trylock together. In a correct application all threads must
have a matching unlock call after each lock (or trylock) call and no unlock calls
without a matching lock (or trylock). For a thread τ to own the mutex it must
have called lock (or trylock) but not (yet) called unlock after that, so m.count
must be positive. ¤

7.5.1 lock-freedom

The lock-free property of the thread library operations will be established with
respect to the processors. The lock-freedom with respect to application threads
of the operations trylock and unlock follows trivially from their lock-freedom
with respect to processors, since there are no context switches in them. For the
operation lock it is obvious that it cannot be lock-free with respect to application
threads, since threads calling lock when the mutex is busy should be blocked.

Theorem 7.5.1 The mutex operations lock, trylock and unlock are all lock-free.

Proof: The only instances of non-sequential code are the hand-off loops in
the operations lock and unlock . Consider the loop in lock . The conditions that
must hold for the processor to stay in the loop are:

(i) the m.waiting queue is empty at line L9; and

(ii) the m.waiting queue is non-empty at line L13; and

(iii) the processor successfully captures the m.hand-off flag at line L15.

For both (i) and (ii) to hold at least one other processor must have completed
an enqueue operation on the m.waiting queue between the execution of line L9
and L13 and thus have made progress.5 The same argument holds for the loop
in unlock . ¤

7.5.2 Mutual exclusion properties

The mutual exclusion properties of the new mutex protocol are established with
respect to application threads and mutexes.

5Note that condition (iii) is irrelevant for the proof of lock-freedom.
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Theorem 7.5.2 (Safety) For any mutex m and at any time t there is at most
one thread τ such that τ is the owner of m at time t.

Proof: A thread τ becomes owner of m because:

(i) it has seen that m.count was zero before τ incremented it (lock, trylock);
since the m.count increments and decrements are atomic, the lemma is
satisfied in this case;

(ii) it has succeeded in taking over the ownership (trylock) from a thread τ ′

after τ ′ detected that there are waiting threads (m.count is non-zero), τ ′

executed unlock , τ ′ found no thread waiting in m.waiting and τ ′ handed
over the ownership of m by setting m.hand-off to True. Since the hand-
off is done by τ performing CAS on m.hand-off, and due to the way that
m.count is modified, the lemma is satisfied in this case;

(iii) it has been activated by a thread τ ′′ (performing an unlock) that succeeded
in the hand-off procedure as in case 2 above. Again, since this is done by
τ ′′ successfully performing CAS on m.hand-off, when m.count is non-zero,
the lemma is satisfied here too;

(iv) it has been activated and is being executed by a processor P that suc-
ceeded in the hand-off procedure (in lock line L8 and below). Since P
successfully performed CAS on m.hand-off and m.count is non-zero, the
lemma is satisfied here, as well.

¤

Lemma 7.5.3 No thread is left blocked in the waiting queue of an unlocked
mutex m when all concurrent operations concerning m have completed.

Proof: Recall from Lemma 7.5.1 that a mutex m is locked if and only if
m.count 6= 0 and m.hand-off = False, so the mutex is unlocked if m.count = 0
or m.hand-off = True.

If m.count = 0 then there clearly cannot be any waiting threads since the first
action of a thread trying to acquire a mutex using lock is to increase m.count.

Assume towards a contradiction that there are no uncompleted operations
and there is a thread τ left in the m.waiting queue, m.count 6= 0 and m.hand-
off = True. Consider the lock operation by the thread τ . It cannot have been
the last operation to complete, because if m.hand-off was True, the CAS at
L5 would have succeeded and lock would enter the hand-off loop with thread τ
available in the m.waiting queue.

But if m.hand-off was False when τ ’s lock operation completed, then there
must have been some other uncompleted operation active inside a hand-off loop
after that point, since that is the only place m.hand-off is set to True (at line
L12 or U8). However, for that operation to leave its hand-off loop and complete,
it must find the m.waiting queue empty after setting m.hand-off to True (line
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L13 or U9). This contradicts our assumption that τ ’s lock operation completed
before m.hand-off was set to True.

Thus it is impossible that all operations on m completed leaving m unlocked
and the thread τ in the m.waiting queue. ¤

Lemma 7.5.4 A mutex is locked if and only if it is owned by a thread.

Proof: Recall from Lemma 7.5.1 that a mutex m is locked if and only if
m.count 6= 0 and m.hand-off = False.

Further, by Lemma 7.5.2 and because m.count is increased by lock and
trylock and only decreased by unlock the mutex m can only be locked when
there are threads that have executed a lock or a successful trylock but not yet
the matching unlock . One of these threads owns the mutex. ¤

Lemma 7.5.5 A thread τ waiting to acquire a mutex m in a call to lock will at
most have to wait for the thread currently owning m and all threads that have
called lock on m before τ ’s call to lock enqueued τ on the m.waiting queue.

Proof: Once the thread τ has been enqueued on the m.waiting queue (line L4)
it only needs to wait for the threads ahead of it in the queue in addition to any
current owner of the mutex before it will acquire the mutex. This is ensured
by the unlock protocol that will activate the first thread in the m.waiting queue
(lines U4-U5). A trylock operation cannot bypass the waiting threads since
m.count is nonzero and unlock only sets the m.hand-off if it finds the waiting
queue to be empty. ¤

Theorem 7.5.3 (Liveness I) A thread τ waiting to acquire a mutex m will
eventually acquire the mutex once its lock operation has enqueued τ on the
m.waiting queue.

Proof: The theorem follows from Lemma 7.5.1, Lemma 7.5.3, Lemma 7.5.4
and Lemma 7.5.5. ¤

Theorem 7.5.4 (Liveness II) A thread τ wanting to acquire a mutex m can
only be starved if there is an unbounded number of lock operations on m per-
formed by threads on other processors.

Proof: The theorem follows from the lock-free nature of the m.waiting queue
and Theorem 7.5.3.

We know from Theorem 7.5.3 that once the thread has enqueued itself on
the m.waiting queue it will not starve, so to starve it must not succeed to enter
the m.waiting queue, that is, its enqueue operation must never complete.

Each time two or more operations on the lock-free queue interfere with each
other, at least one of them make progress, so for one processor to never com-
plete its operation, it will have to be interfered with by a concurrent successful
operation every time it tries to progress. ¤
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Theorem 7.5.5 (Fairness) A thread τ wanting to acquire a mutex m will only
have to wait for the other threads whose lock operation enqueued them on the
m.waiting queue before τ did so.

Proof: The theorem follows from Lemma 7.5.5. ¤

7.5.3 Linearizability

Theorem 7.5.6 The mutex operations lock, trylock and unlock are atomic.

Proof: A lock or trylock operation takes effect when the calling thread becomes
the owner of the mutex. An unlock operation takes effect when the next waiting
thread is activated or, if there is no waiting thread, when the mutex becomes
unlocked. From Lemma 7.5.2 we know that no more than one thread can own
the mutex at a time, and therefore any set of concurrent mutex operations will
take effect one by one in a sequence. ¤

7.6 Experiments

The primary purpose of this work is to enhance qualitative properties of thread
library implementations, such as the tolerance to delays and processor failures.
However, since these properties may also provide a performance advantage with
increasing number of processors, we also wanted to evaluate the performance im-
pact of the lock-free mutex implementation and the lock-free thread library. We
made an implementation on the GNU/Linux operating system. The implemen-
tation is written in the C programming language and was done entirely at the
user-level using “cloned”6 processes as virtual processors for running the threads.
The implementation uses the lock-free queue by Tsigas and Zhang [TZ01b] for
the Ready Queue and the waiting queue in the mutex.

The experiments were run on a PC with two Intel Xeon 2.80GHz processors
(acting as 4 due to hyper-threading) using the GNU/Linux operating system
with kernel version 2.6.9.

The benchmark used for the experimental evaluation consists of a single
critical section protected by a mutex and a set of threads that each try to enter
the critical section a fixed number of times. To change the contention level on
the mutex the amount of work done by each thread between accesses to the
critical section can be changed.

In the experimental evaluation we tested the following thread library con-
figurations:
• The non-blocking thread library and a lock-free mutex using the protocol

presented in this paper. This configuration was tested using 1, 2, 4 and 8
virtual processors to run the threads.

6“Cloned” processes share the same address space, file descriptor table and signal handlers
etc and are also the basis of Linux’s native pthread library implementation.
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(a) High contention result.
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(b) Magnified view of the high contention result.

Figure 7.2: Mutex performance in LFthreads and pthreads at high contention.
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Figure 7.3: Mutex performance in LFthreads and pthreads at low contention.
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• The non-blocking thread library and a spin-lock based mutex. This con-
figuration was tested using 1, 2, 4 and 8 virtual processors to run the
threads.

• The platform’s standard pthreads library and a standard pthread mutex.
On GNU/Linux the pthreads library’s threads are kernel-level “cloned”
processes, which will be scheduled on all available processors, that is at
the same level as the virtual processors in LFthreads. This makes it
difficult to interpret the pthreads results with respect to the others and
they should be considered to be primarily for reference.

Each test configuration was run 10 times. The diagrams present the mean
of these 10 runs.

High contention In Figure 7.2 we show the results from a benchmark where
all work is done inside the critical section, that is, the contention on the mutex
will be high. In this case the desired result would be that the number of critical
sections executed per second for an implementation stays the same regardless of
the number of threads, as this should imply that the synchronization cost does
not increase with the number of threads.

The number of processors, however, affect the synchronization overhead. In
particular, going from a single processor to more than one processor for our
thread library implies a cost since with more than one processor the thread
contexts will have to be stored and restored much more often. (Note that
threads currently use non-preemptive scheduling in our implementation so with
only one virtual processor the threads will run to completion one after the other
without any extra blocking.) The results show that with the same number of
virtual processors the lock-free mutex has less overhead than the lock-based one
(besides offering the qualitative advantages discussed earlier in the paper).

Low contention In Figure 7.3 we show the results from a benchmark where
the threads perform 1000 times more work outside the critical section than
inside, thus making the contention on the mutex low. With the majority of the
work outside the critical section the expected behaviour is that the throughput
increases linearly with the number of threads when there are fewer threads than
(physical) processors and stays constant when the processors stay saturated
with threads running outside the critical section. The results in Figure 7.3
are in agreement with the expected behaviour; we can see that going from one
to two virtual processors doubles the throughput for both the lock-free and
spin-lock based cases. (The fact that going to 4 virtual processors does not
double the throughput yet again is due to the hyper-threading — there are not
4 physical processors available. This can also be seen from the behaviour of
the pthread-based case.) Further, the lock-free mutex shows higher throughput
than the spin-lock-based one using the same number of virtual processors; it
also shows comparable and even better performance than pthread-based case
when the number of threads are large and there are ”enough” virtual processors
(i.e. more than the number of physical processors).
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Our experimental results show that for the LFthreads library and with the
same number of virtual processors our lock-free mutex protocol has less overhead
than a spin-lock-based one both in high and low contention scenarios. This is a
very promising result as the lock-free protocol also offers better fault-tolerance
properties.

7.7 Conclusions

We have presented the first lock-free thread library that provides a lock-free
blocking synchronization primitive. The library is implemented entirely at the
user-level without any need for modifications to the operating system kernel,
using processes as virtual processors. However, the principles behind the library
could also be applied together with scheduler activations, which we believe would
be a very good match, as well as directly at the hardware-level, where they
could form the basis for a fully lock-free implementation of a multiprogrammed
multiprocessor kernel.

We have implemented the library on a PC multiprocessor platform with
two Intel Xeon processors running the GNU/Linux operating system. This
implementation constitutes a proof-of-concept of the lock-free blocking primitive
introduced in the paper and serves as basis for an experimental study of its
performance. The experimental study performed here, using an intensive mutex-
benchmark, shows very positive and promising performance figures. Moreover,
this implementation can also serve as basis for further development, for porting
the library to other multiprocessors such as SGI IRIX/MIPS (e.g. for running
tests on a large SGI NUMA multiprocessor machine) and experimenting with
parallel applications such as the Spark98 matrix kernels or applications from
the SPLASH-2 suite.



Chapter 8

Multi-word Atomic
Read/Write Registers on
Multiprocessor Systems1

Andreas Larsson Anders Gidenstam Phuong H. Ha

Marina Papatriantafilou Philippas Tsigas

Abstract

Modern multiprocessor systems offer advanced synchronization primitives, built in

hardware, to support the development of efficient parallel algorithms. In this paper

we develop a simple and efficient algorithm for atomic registers (variables) of arbi-

trary length. The simplicity and better complexity of the algorithm is achieved via

the utilization of two such common synchronization primitives. In this paper we also

evaluate the performance of our algorithm and the performance of a practical previ-

ously know algorithm that is based only on read and write primitives. The evaluation

is performed on three well-known parallel architectures. This evaluation clearly shows

that both algorithms are practical and that as the size of the register increases our

algorithm performs better, accordingly to its complexity behavior.
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8.1 Introduction

In multiprocessor and multiprocessing systems cooperating processes may share
data via shared data objects. In this paper we are interested in designing and
evaluating the performance of shared data objects for cooperative tasks in mul-
tiprocessor systems. More specifically we are interested in designing a practical
wait-free algorithm for implementing registers (or memory words) of arbitrary
length that could be read and written atomically. (Typical modern multipro-
cessor systems support words of 64-bit size.)

The most commonly required consistency guarantee for shared data objects
is atomicity, also known as linearizability [HW90]. An implementation of a
shared object is atomic or linearizable if it guarantees that even when operations
overlap in time, each of them appears to take effect at an atomic time instant
that lies in its respective time duration, in a way that the effect of each operation
is in agreement with the object’s sequential specification. The latter means that
if we speak of e.g. read/write objects, the value returned by each read equals the
value written by the most recent write according to the sequence of “shrunk”
operations in the time axis.

The classical, well-known and simplest solution for maintaining consistency
of shared data objects enforces mutual exclusion. Mutual exclusion protects
the consistency of the shared data by allowing only one process at time to
access it. Mutual exclusion causes large performance degradation especially
in multiprocessor systems [SGG05, Sun04a] and suffers from potential priority
inversion in which a high priority task can be blocked for an unbounded time
by a lower priority task [SRL90]. Several synchronization protocols have been
introduced to solve the priority inversion problem for uniprocessor [SRL90] and
multiprocessor [Raj90] systems. The solution presented in [SRL90] solves the
problem for the uniprocessor case with the cost of limiting the schedulability of
task sets and also making the scheduling analysis of real-time systems hard, but
the situation is much worse in a multiprocessor real-time system, where a task
may be blocked by another task running on a different processor [Raj90].

Non-blocking implementation of shared data objects is an alternative ap-
proach for the problem of inter-task communication. Non-blocking mechanisms
allow multiple tasks to access a shared object at the same time, but without
enforcing mutual exclusion to accomplish this. They offer significant advantages
over lock-based schemes because (i) they do not suffer from priority inversion;
(ii) they avoid lock convoys; (iii) they provide high tolerance to process failures
(processes or processor stop failures will never corrupt shared data objects); and
(iv) they eliminate deadlock scenarios involving two or more tasks both waiting
for locks held by the other. On the other hand non-blocking protocols have to
use more delicate strategies to guarantee data consistency than the simple en-
forcement of mutual exclusion between the readers and the writers of the data
object.

Non-blocking algorithms can be lock-free or wait-free. Lock-free implemen-
tations guarantee that regardless of the contention and the interleaving of con-
current operations, at least one operation will always make progress. However,
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there is a risk that the progress of other operations might cause one specific
operation to take unbounded time to finish. In a wait-free [Her91] algorithm,
every operation is guaranteed to finish in a limited number of steps, regard-
less of the actions of the concurrent operations. Non-blocking algorithms have
been shown to be of big practical importance [TZ01a, TZ02], and recently NO-
BLE, which is a non-blocking inter-process communication library, has been
introduced [ST02].

From a historic perspective research on non-blocking algorithms stems from
the readers/writers problem. In this problem a number of concurrent processes
are interested in reading from or writing to a shared data object (here also
called a register). A read operation as well as a write operation should take
effect atomically and return or update the entire state of the shared data ob-
ject. When the shared data object is larger than a single word (of the word
size supported by the multiprocessor system at hand) a software algorithm is
needed to solve the readers/writers problem. The classical solution is to use
mutual exclusion to enforce that either (i) no read or write operations overlap
each other; or (ii) no write operations overlap each other or any read opera-
tion. These methods, normally implemented using a mutual exclusion lock or
a readers-writers lock, respectively, suffer from the drawbacks of mutual exclu-
sion mentioned above. In [Lam77] Lamport introduced a lock-free solution to
the readers/writers problem with one writer. Lamport’s algorithm is actually
wait-free for the writer but lock-free for the readers since the writer can force a
slow reader to retry indefinitely. This algorithm followed by the first wait-free
algorithm by Peterson [Pet83] marked the start of long running research efforts
to construct wait-free solutions to the readers/writers problem.

This problem, also known as the problem of multi-word wait-free read/write
registers, has become one of the well-studied problems in the area of non-
blocking synchronization, with numerous results for the construction of e.g.:
(i) single-writer single-reader registers [Lam86, Sim90, CB97]; (ii) single-writer
n-reader registers [Pet83, BP87, KKV87, NW87, KR93, SAG94, HV95, LGH+04];
(iii) 2-writer n-reader registers [Blo88]; and (iv) m-writer n-reader registers
[VA86, PB87, IS92, LV92, LTV96, HV96].

The main goal of the algorithms in the above results is to construct wait-
free multi-word read/write registers using single-word read/write registers and
not other synchronization primitives that may be provided by the hardware
in a system. This has been very significant, providing fundamental results in
the area of wait-free synchronization, especially when we consider the nowadays
well-known and well-studied hierarchy of shared data objects and their synchro-
nization power [Her91]. Many of these solutions involve elegant and symmetric
ideas. Moreover, they have formed the basis for further results in the area of
non-blocking synchronization.

Our motivation for further studying this problem is as follows: As the afore-
mentioned solutions were using only read/write registers as components, they
necessarily have each write operation on the multi-word register write the new
value in several copies (roughly speaking, as many copies as we have readers
in the system), which may be costly. However, modern architectures provide
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int swap(int *mem, int new)
{

tmp := *mem;
*mem := new;
return tmp;

}

int fetch and or(int *mem,
int arg)

{
tmp := *mem;
*mem := tmp | arg;
return tmp;

}

Figure 8.1: The specifications of the swap and fetch and or atomic subopera-
tions.

hardware synchronization primitives stronger than atomic read/write registers,
some of them even accessible at a constant cost-factor away from read/write ac-
cesses. We consider it a useful task to investigate how to use this power, to the
benefit of designing economical solutions for the same problem, which can lead
to structures that are more suitable in practice. Moreover, to the best of our
knowledge, none of the previous solutions has been implemented and evaluated
on real systems.

In this paper we present a simple, efficient wait-free algorithm for implement-
ing multi-word n-reader/single-writer registers of arbitrary word length. In the
new algorithm each multi-word write operation only needs to write the new
value in one copy, thus having significantly less overhead. The new algorithm
uses synchronization primitives called fetch and or and swap (c.f. Figure 8.1
and [SGG05]), which are available in several modern processor architectures, to
synchronize n readers and a writer accessing the register concurrently. Since
the new algorithm is wait-free, it provides high parallelism for the accesses to
the multi-word register and thus significantly improves performance. We com-
pare the new algorithm with the wait-free one in [Pet83], which is also practical
and simple, and two lock-based algorithms, one using a single spin-lock and
one using a readers-writer spin-lock. We design benchmarks to test them on
three different architectures: UMA Sun-Fire-880 with 6 processors, ccNUMA
SGI Origin 2000 with 29 processors and ccNUMA SGI Origin 3800 with 128
processors.

The rest of this paper is organized as follows. In Section 8.2 we describe
the formal requirements of the problem and the related algorithms that we are
using in the evaluation study. Section 8.3 presents our protocol. In Section 8.4,
we give the proof of correctness and complexity of the new protocol. Section 8.5
is devoted to the experimental study comparing our non-blocking protocol with
previous work, both non-blocking and lock-based. The paper concludes with
Section 8.6, with a discussion on the contributed results and further research
issues.
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8.2 Background

System and Problem Model

A shared register of arbitrary length [Pet83, Her93] is an abstract data structure
that is shared by a number of concurrent processes, which perform read or write
operations on the shared register. In this paper we make no assumption about
the relative speed of the processes, i.e. the processes are asynchronous. One of
the processes, the writer, executes write operations and all other processes, the
readers, execute read operations on the shared register. Operations performed
by the same process are assumed to execute sequentially.

An implementation of a register consists of: (i) protocols for executing the
operations (read and write); (ii) a data structure consisting of shared subregisters
and (iii) a set of initial values for these. The protocols for the operations con-
sist of a sequence of operations on the subregisters, called suboperations. These
suboperations are reads, writes or other atomic operations, such as fetch and or
or swap (cf. Figure 8.1), which are either available directly on modern multi-
processor systems or can be implemented from other available synchronization
primitives, such as compare and swap or load linked/store conditional [Her91].
Furthermore, matching the capabilities of modern multiprocessor systems, the
subregisters are assumed to be atomic and to support multiple processes.

A register implementation is wait-free [Her91] if it guarantees that any pro-
cess will complete each operation in a finite number of steps (suboperations)
regardless of the execution speeds of the other processes.

For each operation O there exists a time interval [sO, fO] called its duration,
where sO and fO are the starting and ending times, respectively. There is a
precedence relation on the operations that form a strict partial order (denoted
’→’). For two operations a and b, a → b means that operation a ended before
operation b started. If two operations are incomparable under →, they are said
to overlap.

A reading function π for a register is a function that assigns a high-level write
operation w to each high-level read operation r such that the value returned by
r is the value that was written by w (i.e. π(r) is the write operation that wrote
the value that the read operation r read and returned).

Criterion 8.2.1 A shared register is atomic iff the following three conditions
hold for all possible executions:

1. No-irrelevant. There exists no read r such that r → π(r).

2. No-past. There exists no read r and write w such that π(r)→ w → r.

3. No N-O inversion. There exist no reads r1 and r2 such that r1 → r2

and π(r2)→ π(r1).
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Variable Type Description
WFLAG Boolean Indicates that the writer is writing

in BUF1.
SWITCH Boolean To check if the writer has written in

BUF1.
READING Array of n Boolean Used together with WRITING to

handle reader-writer handshaking.
WRITING Array of n Boolean Used together with READING to

handle reader-writer handshaking.
BUF1 Buffer Main buffer.
BUF2 Buffer Backup buffer.
COPYBUF Array of n buffers An individual backup buffer for each

reader.

Figure 8.2: The shared variables used by Peterson’s algorithm. The number
of readers is n. BUF1 holds the initial register value. All other variables are
initialized to 0 or false.

Algorithm 8.1 Peterson’s algorithm. Lower-case variables are local variables.
Read operation by reader r:
PR1 READING[r] := !WRITING[r];
PR2 flag1 := WFLAG;
PR3 sw1 := SWITCH;
PR4 read BUF1;
PR5 flag2 := WFLAG;
PR6 sw2 := SWITCH;
PR7 read BUF2;
PR8 if (READING[r] == WRITING[r])
PR9 return the value in COPYBUF[r];
PR10 else if ((sw1 != sw2) || flag1 || flag2)
PR11 return the value read from BUF2;
PR12 else
PR13 return the value read from BUF1;

Write operation:
PW1 WFLAG := true;
PW2 write to BUF1;
PW3 SWITCH := !switch;
PW4 WFLAG := false;
PW5 for (each reader r)
PW6 if (READING[r] != WRITING[r])
PW7 write to COPYBUF[r];
PW8 WRITING[r] := READING[r];
PW9 write to BUF2;
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Peterson’s Shared Multi-Word Register

In [Pet83] Peterson describes an implementation of an atomic shared multi-word
register for one writer and many readers. The protocol does not use any other
atomic suboperations than reads and writes and is described below.

The idea is to use n+2 shared buffers, each of which can hold a value of the
register, together with a set of shared handshake variables to make sure that the
writer does not overwrite all buffers that is being read by a reader and that each
reader chooses a stable but up-to-date buffer to read from. The shared variables
are shown in Figure 8.2 and the protocols for the read and write operations are
shown in Algorithm 8.1.

In the algorithm each reader r have three choices of where to get the current
register value, namely BUF1, BUF2 and COPYBUF[r]. The primary alternative
for a reader is BUF1 which it reads at line PR4. However, if there is a concurrent
write, the writer might write to BUF1 (line PW2) while the reader is reading the
same buffer. The flags WFLAG and SWITCH are used to detect most of these
conflicts. A reader reads WFLAG and SWITCH both before (lines PR2 and PR3)
and after (lines PR5 and PR6) it reads BUF1. The writer sets WFLAG to true
(line PW1) before it begins to write to BUF1 (line PW2) and flips SWITCH
(line PW3) and resets WFLAG to false (line PW4) after it has updated BUF1.
Through this handshake mechanism a reader can detect if (i) the writer was
writing to BUF1 when it started to read it, (ii) the writer was writing to BUF1
when it finished reading that buffer, or (iii) the writer did a complete write of
BUF1 (i.e. lines PW1 to PW4) while the reader was reading that buffer (in this
case SWITCH has been flipped). In all these cases the reader cannot assume it
managed to read BUF1 correctly.

However, by using WFLAG and SWITCH alone, a reader cannot detect the
case where the writer managed to complete an even number of writes to BUF1,
since in those cases SWITCH will be back to its original value. The per-reader
flags READING[r] and WRITING[r] are used to handle these cases. A reader
r makes READING[r] equal to the writer’s corresponding flag WRITING[r] at
the beginning of each read operation (line PR1). This is a signal to the writer
that it should write the register value also to COPYBUF[r] (lines PW6 and
PW7). When the writer has written COPYBUF[r] it sets WRITING[r] equal to
READING[r] (line PW8) to signal the reader that COPYBUF[r] now contains
a valid register value. If the reader detects this signal (line PR8), i.e. when
the writer performed lines PW6 to PW8 after the reader performed line PR1
but before it reached line PR8, then the reader can safely return the value in
COPYBUF[r] as the current register value.

If the reader didn’t detect this signal, then it can examine (line PR10) the
values it read from WFLAG and SWITCH to determine whether it read a correct
value from BUF1 or not. This test (line PR10) is now safe, since to fool it the
writer must have flipped SWITCH (line PW3) at least twice since the reader
was at line PR3 and in that case the writer should have written to COPYBUF[r]
and signaled the reader (at line PR8) as described above.

If the test at line PR10 indicates that the reader did not read BUF1 correctly
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Algorithm 8.2 A spin-lock algorithm with exponential back-off.

spin lock(int *lock)
backoff := 1;
while (swap(lock, 1))

backoff := 2 * backoff;
spin for backoff iterations;

spin unlock(int *lock)
*lock := 0;

then the reader can safely return the value it read from BUF2 (line PR7) instead.
The value read from BUF2 is safe because for the writer to interfere with both
the reading of BUF1 (line PR4) and the reading of BUF2 (line PR7) the writer
must execute both its write of BUF1 (line PW1) and its write of BUF2 (line
PW9) before the reader reached line PR8, and in that case it should have written
to COPYBUF[r] and signaled the reader (at line PR8) as described above.

Peterson’s implementation is simple and efficient in most cases, however, a
high-level write operation potentially has to write n + 2 copies of the new value
and all high-level reads read at least two copies of the value, which can be quite
expensive when the register is large. While it is unlikely that one can do better
using only read/write subregisters, most modern systems support additional
atomic suboperations, such as swap. Our new register implementation uses these
additional suboperations to implement high-level read and write operations that
only need to read or write one copy of the register value.

We have decided to compare our method with this algorithm because: (i) they
are both designed for the 1-writer n-reader shared register problem; (ii) com-
pared to other more general solutions based on weaker subregisters (which are
much weaker than what common multiprocessor machines provide) this one
involves the least communication overhead among the processes, without re-
quiring unbounded timestamps or methods to bound the unbounded version
(cf. [HV02, IL93] for examples of such methods).

Mutual-Exclusion Based Solutions

For comparison we also evaluate the performance of two mutual-exclusion-based
register implementations, one that uses a single spin-lock with exponential back-
off (see Algorithm 8.2) and another that uses a readers-writers spin-lock (see
Algorithm 8.3 and [SGG05]) with exponential back-off to protect the shared
register. The readers-writers spin-lock is similar to the spin-lock but allows
readers to access the register concurrently with other readers.

8.3 The New Algorithm

The idea of the new algorithm is to remove the need for reading and writ-
ing several buffers during read and write operations by utilizing the atomic
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Algorithm 8.3 A readers-writers spin-lock algorithm with exponential back-off.

struct rwlock t
int lock
int rlock
int readers

writer lock(rwlock t *lock)
spin lock(&lock−>lock);

writer unlock(rwlock t *lock)
spin unlock(&lock−>lock);

reader lock(rwlock t *lock)
spin lock(&lock−>rlock);
lock−>readers := lock−>readers + 1;
if (lock−>readers == 1)

spin lock(&lock−>lock);
spin unlock(&lock−>rlock);

reader unlock(rwlock t *lock)
spin lock(&lock−>rlock);
lock−>readers := lock−>readers - 1
if (lock−>readers == 0)

spin unlock(&lock−>lock);
spin unlock(&lock−>rlock);

synchronization primitives available on modern multiprocessor systems. These
primitives are used for the communication between the readers and the writer.
The new algorithm uses n + 2 shared buffers that each can hold a value of
the register. The number of buffers is the same as for Peterson’s algorithm,
which matches the lower bound on the required number of buffers. Informally
the argument is that the number of buffers cannot be less for any wait-free
implementation because each of the n readers may be reading from one buffer
concurrently with a write, and the write should not overwrite the last written
value (since one of the readers might start to read again before the new value
is completely written).

The shared variables used by the algorithm are presented in Figure 8.3. The
shared buffers are in the (n+2)-element array BUF. The atomic variable SYNC
is used to synchronize the readers and the writer. This variable consists of two
fields: (i) the pointer field, which contains the index of the buffer in BUF that
contains the most recent value written to the register and (ii) the reading-bit
field, which holds a handshake bit for each reader, each such bit is set when the
corresponding reader has read the value presently contained in the pointer field.

A reader (Algorithm 8.4) uses fetch and or to atomically read the value of
SYNC and set its reading-bit. Then it reads the value from the buffer pointed
to by the pointer field.

The writer (Algorithm 8.4) needs to keep track of the buffers that are avail-
able for use. To do this it stores the index of the buffer where it last saw each
reader, in a n-element array trace, in persistent local memory. At the beginning
of each write the writer selects a buffer index to write to. This buffer should be
different from the last one it used and with no reader intending to use it. The
writer writes the new value to that buffer and then uses the suboperation swap
to atomically read SYNC and update it with the new buffer index and cleared
reading-bits. The old value read from SYNC is then used to update the trace
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Constants Description
PTRFIELDLEN The number of bits used for the pointer field

indexing the most recently update buffer.
PTRFIELD A bitmask containing 1’s in the PTRFIELDLEN

least significant bits.
Variable Type Description
BUF[n + 2] Array of n + 2 The buffers for

buffers the register value.
SYNC Unsigned word Consists of two fields.
bit 0 .. PTRFIELDLEN−1 Integer Index of the buffer
of SYNC with the most recent

register value.
bit PTRFIELDLEN + r Bit The reading bit
of SYNC for reader r.

Figure 8.3: The constants and shared variables used by the new algorithm. The
number of readers is n. Initially BUF[0] holds the register value and SYNC
points to this buffer while all reader-bits are 0.

array for those readers whose reading-bit was set.
The maximum number of readers is limited by the size of the words that

the two atomic primitives used can handle. If we are limited to 64-bit words we
can support 58 readers as 6 bits are needed for the pointer field to be able to
distinguish between 58+2 buffers.

8.4 Analysis

We first prove that the new algorithm satisfies the conditions in Lamport’s
criterion [Lam86] (cf. Criterion 8.2.1 in section 8.2), which guarantee atomicity.

Lemma 8.4.1 The new algorithm satisfies condition “No-irrelevant”

Proof:
A read r reads the value that is written by the write π(r). Therefore r’s

read(BUF [j]) operation (line R4 in Fig. 8.4) starts after π(r)’s write(BUF [j])
operation (line W2 in Fig. 8.4) starts. On the other hand, the starting time-
point of the read(BUF [j]) operation is before the ending time-point of r and the
starting time-point of the write(BUF [j]) operation is after the starting time-
point of π(r), so the ending time-point of r must be after the starting time-point
of π(r), or r 6→ π(r). ¤

Lemma 8.4.2 The new algorithm satisfies condition “No-past”

Proof: We prove the lemma by contradiction. Assume there are a read r and
a write w such that π(r) → w → r, which means (i) write π(r) ends before
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Algorithm 8.4 The read and write operations of the new algorithm. The trace-
array and oldwptr are static, i.e. stay intact between write operations. They
are both initialized to zero.
Read operation by reader r:
R1 readerbit := 1 << (r + PTRFIELDLEN);
R2 rsync := fetch and or(&SYNC, readerbit);
R3 rptr := rsync & PTRFIELD;
R4 read BUF[rptr]

Write operation:
W1 choose newwptr such that newwptr != oldwptr and

newwptr != trace[r] for all r;
W2 write BUF[newwptr];
W3 wsync := swap(&SYNC, 0 | newwptr); /* Clears all reading bits */
W4 oldwptr := wsync & PTRFIELD;
W5 for each reader r
W6 if (wsync & (1 << (r + PTRFIELDLEN)))
W7 trace[r] := oldwptr;

write w starts and write w ends before read r starts and (ii) r reads the value
written by π(r). Because π(r)→ w → r, the value of SY NC that r reads (line
R2 in Fig. 8.4) is written by a write w′ using the swap primitive (line W3 in
Fig. 8.4), where w′ = w or w → w′ → r, i.e. w′ 6= π(r) because π(r) → w.
On the other hand, because r reads the buffer that is pointed by SY NC (lines
R2-R4), r would read the buffer that has been written completely by w′ 6= π(r).
That means r does not read the value written by π(r), a contradiction. ¤

Lemma 8.4.3 The new algorithm satisfies condition “No N-O inversion”

Proof: We prove the lemma by contradiction. Assume there are reads r1 and
r2 such that r1 → r2 and π(r2)→ π(r1). Because (i) π(r1) always keeps track of
which buffers are used by readers in the array trace[] (lines W4-W7 in Fig. 8.4)
and (ii) the buffer π(r1) chooses to write to is different from those recorded in
trace[] as well as the last buffer the writer has written, wptr (lines W1-W2), r1

reads the value written by π(r1) only if r1 has read the correct value of SY NC
(line R2 in Fig. 8.4) that has been written by π(r1) (line W3 in Fig. 8.4).

On the other hand, because r1 → r2, the value of SY NC that r2 reads must
be written by a write wk where wk = π(r1) or π(r1) → wk, i.e. wk 6= π(r2)
because π(r2) → π(r1). Moreover, because r2 reads the buffer that is pointed
to by SY NC (lines R2-R4), r2 would read the buffer that has been written
completely by wk 6= π(r2) (lines W2-W3). That means r2 reads the value that
has not been written by π(r2), a contradiction. ¤

With the correctness of the proposed wait-free algorithm established, let us
focus on its complexity, also in comparison with Peterson’s wait-free algorithm.
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Complexity

The complexity of a read operation is of order O(m), where m is the size of the
register, for both the new algorithm and Peterson’s algorithm [Pet83]. However,
in Peterson’s algorithm the reader may have to read the value up to 3 times,
while in our algorithm the reader will only read the value once but has to use the
fetch and or suboperation once. A write operation in the new algorithm writes
one value of size m and then traces the n readers. The complexity of the write
operation is therefore of order O(n+m). For Peterson’s algorithm however, the
writer must, in the worst case, write to n+2 buffers of size m, thus its complexity
is of order O(n ·m). As the size of registers and the number of threads increase,
the new algorithm is expected to perform significantly better than Peterson’s
algorithm with respect to the writer. With respect to the readers the handshake
mechanism used in the new algorithm can be more expensive compared to the
one used by Peterson’s, but on the other hand the new algorithm only needs
to read one m-word buffer, whereas Peterson’s need to read at least two and
sometimes three buffers.

Using the above, we have the following theorem:

Theorem 8.4.1 A multi-reader, single-writer, m-word sized register can be
constructed using n+2 buffers of size m each. The complexity of a read operation
is O(m). The complexity of a write operation is O(n + m).

8.5 Performance Evaluation

The performance of the proposed algorithm was tested against: (i) Peterson’s
algorithm [Pet83], (ii) a spinlock-based implementation with exponential backoff
and (iii) a readers-writers spinlock with an exponential backoff (cf. Section 8.2
for descriptions of the respective algorithms).

Method

We measured the number of successful read and write operations during a fixed
period of time. The higher this number the better the performance. In each
test one thread is the writer and the rest of the threads are the readers. Two
sets of tests have been done: (i) one set with low contention and (ii) one set
with high contention. During the high-contention tests each thread reads or
writes continuously with no delay between successive accesses to the multi-word
register. During the low-contention tests each thread waits for a time-interval
between successive accesses to the multi-word register. This time interval is
much longer than the time used by one write or read. Tests have been performed
for different number of threads and for different sizes of the register.

Systems

The performance of the new algorithm has been measured on both UMA (Uni-
form Memory Architecture) and NUMA (Non Uniform Memory Architecture)
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(b) 8192 word register, high contention.

Figure 8.4: Average number of reads or writes per thread on the UMA SunFire
880 at high contention.
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(b) 8192 word register, low contention.

Figure 8.5: Average number of reads or writes per thread on the UMA SunFire
880 at low contention.
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(a) All operations (readers and writer).
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(b) Operations by the writer.

Figure 8.6: Average number of operations per thread with 14 threads and high
contention on NUMA Origin 2000.
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(b) Operations by the writer.

Figure 8.7: Average number of operations per thread with a register size of 8192
words and high contention on NUMA Origin 2000.
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Figure 8.8: Average number of operations per thread with low contention on
NUMA Origin 2000.
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(b) 8192 word register, high contention.

Figure 8.9: Average number of reads or writes per thread on NUMA Origin
3800 at high contention.
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(b) 8192 word register, low contention.

Figure 8.10: Average number of reads or writes per thread on NUMA Origin
3800 at low contention.
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Figure 8.11: The average number of reads or writes per thread for the new algo-
rithm and Peterson’s algorithm compared with themselves for different number
of threads under high contention. Run on NUMA Origin 2000.
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Figure 8.12: The number of writes per thread for the new algorithm and Peter-
son’s algorithm compared with themselves for different number of threads under
high contention. Run on NUMA Origin 2000.
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Figure 8.13: Average number of operations per thread at high contention and
28 threads on NUMA Origin 2000.
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multiprocessor systems [Tan01]. The difference between UMA and NUMA is
how the memory is organized. In a UMA system all processors have the same la-
tency and bandwidth to the memory. In a NUMA system, processors are placed
in nodes and each node has some of the memory directly attached to it. The
processors of one node have fast access to the memory attached to that node,
but accesses to memory on another node have to be made over the interconnect
network and are therefore significantly slower.

The three different systems we used are:

• An UMA Sun SunFire 880 with 6 900MHz UltraSPARC III+ (8MB L2
cache) processors running Solaris 9.

• A ccNUMA SGI Origin 2000 with 29 250MHz MIPS R10000 (4MB L2
cache) processors running IRIX 6.5.

• A ccNUMA SGI Origin 3800 with 128 500MHz MIPS R14000 (8MB L2
cache) processors running IRIX 6.5.

The systems were used non-exclusively, but for the SGI systems the batch-
system guarantees that the required number of CPUs was available. The swap
and fetch and or suboperations were implemented by the swap hardware instruc-
tion [WG00] and a lock-free subroutine using the compare and swap hardware
instruction on the SunFire machine. On the SGI Origin machines swap and
fetch and or were implemented by the system provided [Cor04] synchronization
primitives lock test and set and fetch and or, respectively.

Results

Following the analysis and the diagrams presenting the experiments’ outcome,
it is clear that the performance of the lock-based solutions is not even near
the figures of the wait-free algorithms unless the number of threads is minimal
(2) and the size of the register is small. Moreover, as expected following the
analysis, the algorithm proposed in this paper performs at least as well and in
the large-size register cases better than Peterson’s wait-free solution.

More specifically, on the UMA SunFire the new algorithm outperforms the
others for large registers under both low and high contention (cf. Figure 8.4-8.5).
The worst performer under high contention is the spinlock, which is particularly
vulnerable to threads being preempted inside the critical section, something that
is increasingly likely as the number of threads exceed the number of processors.
Under low contention the differences are, as expected, much less pronounced.
Note that the high contention results are presented on an exponential scale while
the low contention results use a linear scale.

On the NUMA Origin 2000 platform (cf. Figures 8.6-8.8) and on the NUMA
Origin 3800 platform (cf. Figures 8.9-8.10), we observe the effect of the par-
ticular architecture, namely that the possibility to cause high contention on a
synchronization variable significantly affects the performance of the solutions.
By observing the performance diagrams for this case, we still see the writer in
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the new algorithm performs significantly better than the writer in Peterson’s
algorithm in both the low and high-contention scenarios. Recall that the writer
following Peterson’s algorithm may have to write to more buffers as the number
of readers grow. The writer of the algorithm proposed here has no such prob-
lems. The latter phenomenon, though, has a seemingly positive side-effect in
Peterson’s algorithm: namely, as the writer becomes slower, the chances that
the readers have to read their individual buffers apart from the regular two
buffers, become smaller. Hence, the difference in the readers’ performance for
the two wait-free algorithms under high contention becomes smaller. (cf. Fig-
ure 8.6(a) and 8.7(a). The difference in behaviour between readers and writers
under high contention and a varying number of threads can be studied in detail
in Figure 8.7(a) and Figure 8.7(b). Some observations based on the results are:
(i) the readers/writers lock does well in terms of read operations while the writer
suffers significantly since a write can be locked out by preceding and concurrent
overlapping reads; (ii) the new algorithm’s advantage over Peterson’s decreases
when the number of threads increase for the readers, while it increases for the
writer.

Under low contention the two NUMA Origin platforms (cf. Figure 8.8 and
Figure 8.10) show similar behaviour. In the experiments with varying register
size (cf. Figure 8.8(a) and Figure 8.10(a)) there is a break in the number of
operations per thread at a certain register size which is probably caused by the
increased amount of interconnect traffic needed at the larger sizes. The two
wait-free algorithms show good scalability behaviour across different number of
threads (cf. Figure 8.8(b) and Figure 8.10(b)) with the new algorithm having an
advantage over Peterson’s. The average number of operations per thread for the
readers/writers lock is also good, although as discussed above the writer is likely
to be locked out most of the time. The large drop at 10 threads for the read-
ers/writers lock in Figure 8.10(b) is probably caused by the NUMA architecture
in conjunction with competing workloads (the NUMA Origin 3800platform is
shared among many concurrent users) causing a high load on the interconnect
and possibly also forcing our benchmark to use widely distributed processors
and memory in the machine.

In Figure 8.11 and Figure 8.12 we can see how the performance of the new
algorithm and Peterson’s algorithm changes both with the number of words in
the register and the number of threads. The new algorithm is more sensitive to
the addition of threads than Peterson’s algorithm on this platform, most likely
due to increased contention. For larger words the difference becomes smaller
and smaller and eventually the new algorithm outperforms Peterson’s. On the
writer’s side we see that Peterson’s algorithm loses performance to a higher de-
gree with increasing number of threads than the new algorithm does. The sim-
ilar and characteristic shape of the performance curves for both algorithms are
due to the properties of the particular multiprocessor hardware, e.g. cache-line
and page size and the interconnect bandwidth. Figure 8.13 directly compares
the performance of the new algorithm and Peterson’s algorithm for 28 threads
from the experiments on the NUMA Origin 2000 system above. Here we can
see that while Peterson’s algorithm maintains an advantage in the number of
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read operations until a large register size, the new algorithm has an increasing
advantage in the number of write operations.

8.6 Conclusions

This paper presents a simple and efficient algorithm for atomic registers (mem-
ory words) of arbitrary size. The simplicity and the good time complexity of the
algorithm are achieved via the use of two common synchronization primitives.
The paper also presents a performance evaluation of (i) the new algorithm;
(ii) a previously known practical algorithm that is based only on read and write
operations; and (iii) two mutual-exclusion-based registers. The evaluation is
performed on three different well-known multiprocessor systems.

Since shared objects are commonly used in parallel/multithreaded appli-
cations, such results and further research along this line, on shared objects
implementations, is significant towards providing better support for efficient
synchronization and communication for these applications.
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Chapter 9

Conclusions and future
work

In this thesis we have studied optimistic methods for synchronization in key
system services. We have proposed new algorithms, and by analyzing their
properties, implementing them and evaluating them in practical experiments we
have shown that these optimistic methods offer benefits for concurrent system
services in terms of overhead, throughput and scalability.

We proposed lightweight causal cluster consistency, an information dissemi-
nation service providing optimistic causal order, e.g. for multi-peer collaborative
applications. Our algorithm runs on top of decentralized probabilistic protocols
for group communication and its design aims to scale well, impose an even load
on the system and provide high-probability reliability guarantees. Our analysis
and experimental study indicate that our algorithm meets its goals.

Together with the lightweight causal cluster consistency algorithm we also
developed a dynamic and fault-tolerant cluster management algorithm for man-
aging the amount of concurrency in event-based peer-to-peer dissemination sys-
tems. The algorithm manages a set of tickets/shared resources such that each
ticket has only one owner and can also recover tickets from crashed processes.

We also studied the accuracy of plausible timestamps with fixed and small
number of entries, aiming at scalable solutions for large systems. Within this
effort we analyzed how these clocks may relate causally independent event pairs.
Based on the criteria derived from the analysis we designed two logical clock
algorithms, MinDiff and ROV-MRS that both show very competitive perfor-
mance for small clock/timestamp sizes.

Future work in this area is, among other things, to examine applications
where plausible clocks with good ordering accuracy may give significant bene-
fits, such as maintenance of causally consistent replicas of objects and causally
consistent information dissemination in large peer-to-peer systems. Further,
the cluster consistency model could be extended to other types of consisten-
cies besides causal; e.g. when the interest is on the ordering of overlapping or

203
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commuting operations on shared data.
For shared memory systems we proposed two lock-free implementations of

system services together with new algorithms and data structures needed in
the designs (flat-sets and hand-off) and the analysis of these. In particular,
we presented NBmalloc, a lock-free concurrent memory allocator designed
to enhance performance and scalability on multiprocessors and LFthreads,
a lock-free user-level thread library. We evaluated our implementations experi-
mentally using benchmark applications and compared them to the “traditional”
service implementations. Our evaluation shows promising results with respect
to scalability and throughput in addition to the qualitative properties gained
from a lock-free design, such as tolerance against delayed or stopped processes.
Future work along this track include generalizing the method for lock-free “inter-
object” operations from the flat-set data-structure in NBmalloc. A general
methodology in this direction would enable combinations of known lock-free
data structures (e.g. list-structures) into larger, interconnected ones, for use in
lock-free applications and system services.

We presented a lock-free memory reclamation algorithm intended for use in
lock-free data structures needing dynamic memory. Our algorithm is based on
reference counting, and is to our knowledge the first lock-free solution that has
all the following properties: (i) guarantees the safety of local as well as global
references, (ii) provides an upper bound of deleted but not yet reclaimed nodes,
(iii) is compatible with arbitrary memory allocation schemes, and (iv) uses only
atomic primitives that are available in modern architectures. It also showed
improved performance compared to one of the most practical previous solution.

We also presented a simple and efficient algorithm for atomic registers of
arbitrary size. The algorithm has improved time complexity and also improved
performance compared to the most practical previously known algorithm.

Projects of interest to further continuing and building on this work include
the assembling of lock-free data structures as well as support components for
implementing lock-free data structures, such as memory reclamation algorithms,
into a library. The availability of such libraries is crucial for the adoption of
lock-free methods in real applications, since to successfully implement lock-free
algorithms from scratch often requires considerable effort and expertise. An-
other research issue related to libraries of lock-free components is to investigate
how to design clean, easy to use and to understand interfaces to these compo-
nents.
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[RST91] Michel Raynal, André Schiper, and Sam Toueg. The causal or-
dering abstraction and a simple way to implement it. Information
Processing Letters, 39(6):343–350, September 1991.

[SAG94] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda.
The elusive atomic register. Journal of the ACM, 41(2):311–339,
March 1994.

[Sch88] Frank B. Schmuck. The use of efficient broadcast protocols in asyn-
chronous distributed systems. Technical Report TR88-928, Cornell
University, Computer Science Department, August 1988.

[SGG05] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operat-
ing Systems Concepts. Wiley, 2005.

[SGI03] SGI. The standard template library for C++, 2003.
http://www.sgi.com/tech/stl/Allocators.html.

[Sim90] H. R. Simpson. Four-slot fully asynchronous communication
mechanism. IEE Proceedings, Computers and Digital Techniques,
137(1):17–30, January 1990.

[SJZ+98] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and
David Chen. Achieving convergence, causality preservation, and in-
tention preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction, 5(1):63–108, 1998.

[SK92] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementa-
tion of vector clocks. Information Processing Letters, 43(1):47–52,
August 1992.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM
2001 Conference, pages 149–160. ACM Press, August 2001.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185, Septem-
ber 1990.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1):42–81, 2005.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing (PODC 1995), pages 204–213. ACM Press,
August 1995.



218 BIBLIOGRAPHY

[ST02] H̊akan Sundell and Philippas Tsigas. NOBLE: A non-blocking
inter-process communication library. In Proceedings of the 6th
Workshop on Languages, Compilers and Run-time Systems for
Scalable Computers, Lecture Notes in Computer Science. Springer
Verlag, 2002.

[ST03] H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent
priority queues for multi-thread systems. In Proceedings of the
17th IEEE/ACM International Parallel and Distributed Processing
Symposium (IPDPS 03). IEEE Press, 2003.

[ST04] H̊akan Sundell and Philippas Tsigas. Lock-free and practical de-
ques using single-word compare-and-swap. In Proceedings of the
8th International Conference on Principles of Distributed Systems
(OPODIS ’04), volume 3544 of Lecture Notes in Computer Science.
Springer Verlag, December 2004.

[Ste00] Bjarne Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. In ISMM 2000 Proceedings of the Second International Sym-
posium on Memory Management, volume 36(1) of ACM SIGPLAN
Notices. ACM Press, October 2000.

[Sun04a] H̊akan Sundell. Efficient and Practical Non-Blocking Data Struc-
tures. PhD thesis, Chalmers University of Technology, November
2004.

[Sun04b] H̊akan Sundell. Wait-free reference counting and memory manage-
ment. Technical Report 2004-10, Computing Science, Chalmers
University of Technology, November 2004.

[Sun05] H̊akan Sundell. Wait-free reference counting and memory man-
agement. In Proceedings of the 19th International Parallel & Dis-
tributed Processing Symposium. IEEE, April 2005.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall,
second edition, 2001.

[TR01] Francisco J. Torres-Rojas. Performance evaluation of plausible
clocks. In Proceedings of the 7th International Euro-Par Confer-
ence (Euro-Par ’01), volume 2150 of Lecture Notes in Computer
Science, pages 476–481. Springer Verlag, August 2001.

[TRA99] Francisco J. Torres-Rojas and Mustaque Ahamad. Plausible clocks:
Constant size logical clocks for distributed systems. Distributed
Computing, 12:179–195, 1999.

[TRAR98] Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel Raynal.
Lifetime based consistency protocols for distributed objects. In
Proceedings of the 12th International Symposium on Distributed



BIBLIOGRAPHY 219

Computing (DISC ’98), volume 1499 of Lecture Notes in Computer
Science, pages 378–392. Springer Verlag, September 1998.

[TS92] John Turek and Dennis Shasha. The many faces of consensus in
distributed systems. IEEE Computer, 25(6):8–17, June 1992.

[TSP92] John Turek, Dennis Shasha, and Sundeep Prakash. Locking with-
out blocking: making lock based concurrent data structure algo-
rithms nonblocking. In Proceedings of the 11th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 212–222. ACM Press, 1992.

[TZ01a] Philippas Tsigas and Yi Zhang. Evaluating the performance of non-
blocking synchronisation on shared-memory multiprocessors. In
Proceedings of the ACM SIGMETRICS 2001/Performance 2001,
pages 320–321. ACM Press, June 2001.

[TZ01b] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-
blocking concurrent fifo queue for shared memory multiprocessor
systems. In Proceedings of the 13th annual ACM Symposium on
Parallel Algorithms and Architectures, pages 134–143. ACM Press,
2001.

[TZ02] Philippas Tsigas and Yi Zhang. Integrating non-blocking syn-
chronisation in parallel applications: Performance advantages and
methodologies. In Proceedings of the 3rd ACM Workshop on Soft-
ware and Performance (WOSP ’02), pages 55–67. ACM Press, July
2002.
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