
NbAda

Non-blocking Algorithms and Data Structures

Library

Reference Manual
version 0.1.0-pre0

Anders Gidenstam (andersg(at)mpi-inf.mpg.de)

Draft 18th September 2008

Algorithms and Complexity Group
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

Saarbrücken, Germany, 2008

2

Chapter 1

Introduction

NbAda is a collection of non-blocking algorithms and concurrent data structures in a common
infrastructure aiming to be accessible for use by non-expert programmers as well as providing
support for implementation of further non-blocking algorithms. NbAda is implemented in Ada

95 and is distributed as free software under the terms of the GNU Public License (c.f. Appendix A).

1.1 Concurrent data access in shared memory systems

1

In a shared memory system the processes2 have access to a set of shared memory locations
which they may use to communicate. A process can read data from and write data to each shared
memory location. The number of processes can be much larger than the number processors due to
multiprogramming, which may interleave the execution of several processes on the same processor.
The processes are often considered to be asynchronous, that is, their rate of execution might vary
arbitrarily, because of the interleaving. This has certain implications for the possibilities for the
synchronization and coordination of processes which we will discuss below.

1.1.1 Linearizability

We want the semantics of all operations on a shared data object to be the same as for the same
operation on the corresponding sequential object. The consistency model that captures this is
called linearizability and was introduced by Herlihy and Wing in [HW90]. Linearizability requires
that for each operation, in a concurrent execution of operations on the shared data object, there
is an atomic time instant that lies within its duration where the operation takes effect, in a way
such that the outcome of the operation agrees with the object’s sequential specification.

1.1.2 Lock-based synchronization

The traditional way to synchronize processes/threads accessing a shared data object in a con-
current program is to use mutual exclusion. Mutual exclusion is normally implemented using a
lock, which is a shared variable together with routines to atomically acquire and release the lock.
The atomicity of acquire and release guarantees that only one process can acquire and hold the
lock at a time. The most common approach when synchronizing using locks is to use the lock to
implement critical sections, that is, some pieces of code that can only be run by one process at
the time. For a shared data object, it is common that the operations it supports are implemented
as mutually exclusive critical sections.

1This introduction is based on the introduction in [Gid06]
2We will use the term process and thread interchangeably in the context of general shared memory synchroniza-

tion. If we talk about threads and processes in the operating system sense it will be made clear from context.

3

4 CHAPTER 1. INTRODUCTION

The use of locks and the sequential nature of critical sections cause a number of drawbacks,
namely:

• Deadlock prone. With locks it is not hard to create circular lock dependencies that cause
two (or more processes) to get blocked by both trying to acquire a lock that is held by the
other. Furthermore, a process that crashes while holding some lock(s) is also likely to block
the progress of other processes.

• Blocking. The process that has acquired the lock will delay all other processes that also
need that lock until it has finished executing inside the critical section. To make matters
worse the process inside the critical section may itself be delayed by being preempted by the
scheduler, suffer a page-fault, try to acquire another lock or wait for IO inside the critical
section.

• Priority inversion. This is a pathological case that can occur when using a strict priority
based scheduler, where a medium priority process can delay a high priority process, poten-
tially indefinitely on a single processor system, by preempting a low priority process that
has acquired a lock needed by the high priority process. This problem can be avoided by
employing priority inheritance protocols as proposed by Sha et al. [SRL90].

1.1.3 Non-blocking synchronization

Non-blocking synchronization techniques avoid the use of locks by using cunning algorithms, which
often but not always use hardware synchronization primitives, to create shared data objects that
can be accessed simultaneously by several processes. By avoiding locks non-blocking synchroniza-
tion does not exhibit the problems of deadlocks, blocking and priority inversion, which lock-based
synchronization suffers from. Non-blocking shared data objects also have a higher degree of
fault-tolerance than lock-based ones since they can tolerate any number of processes experiencing
stop-failures.

There are two kinds of non-blocking synchronization, lock-free synchronization and the stronger
wait-free synchronization.

Lock-free synchronization

A lock-free algorithm guarantees that regardless of the contention caused by concurrent operations
and the interleaving of their steps, at each point in time there is at least one operation which is
able to make progress. However, as there is no fairness guarantee, some operation could be starved
and take unbounded time to finish.

The lack of fairness guarantee significantly simplifies the construction of lock-free algorithms
compared to wait-free ones and leads to algorithms that are fast when there are no conflicts but
cause slow down for all except one process involved in a conflict. Hence, lock-free synchronization
is also known as optimistic synchronization [Rin99].

In [Her93] Herlihy described a general method for transforming any sequential data object
implementation to a lock-free shared data object implementation. In short, the methodology is
like this: The state of the shared data object is represented by a pointer to the current version;
an operation on the shared data object first makes a new private copy of the current version,
applies the sequential version of the desired operation on the private copy and thus creates a new
prospective state of the shared object. Then it tries to install this prospective state as the new
version of the shared object using an atomic synchronization primitive that will only succeed if the
current version of the shared object is still the same as the one the new state was computed from.
If the operation fails to install its new state, some other operation(s) have managed to install their
new versions and this operation has to retry from the beginning.

This general methodology is often not very efficient because (i) the entire object is copied
for each update (this can be optimized though) and (ii) the resulting lock-free shared object is

1.1. CONCURRENT DATA ACCESS IN SHARED MEMORY SYSTEMS 5

not disjoint-access parallel, that is, all concurrent operations on it cause conflicts even when the
operations only access disjoint parts of the shared object.

For the above reasons, a significant research effort is being spent on the task of designing and
developing efficient lock-free implementations of various data structures.

The use of lock-free instead of lock-based synchronization can give significant performance
gains in parallel applications, as shown by Tsigas and Zhang in [TZ01a, TZ02], as well as in
operating systems, for example as suggested by Greenwald and Cheriton in [GC96].

Wait-free synchronization

A wait-free algorithm is both lock-free and fair, it guarantees that every operation finishes in a
bounded number of its own steps, regardless of the actions of other operations. This is a very
strong property, as it decouples the processes using the same shared data object from each other.
This makes wait-free shared data objects attractive to use, for example, in hard real-time systems
where the worst-case execution time has to be known for every operation and where lock-based
critical sections limit the schedulability of the system and complicate the schedulability analysis. A
drawback, however, is that algorithms that are wait-free, are often also quite complex, in particular
for non-trivial shared objects.

A common approach in implementing wait-free algorithms is the use of helping schemes [Her91].
In a helping scheme each operation first announces information about what it wants to do with
the shared object in some global data structure, then it checks in the announce-structure to see if
there are other operations that it needs to help before proceeding with its own.

Barnes presented a method similar to helping in [Bar93]. In his method each operation on
the shared data object is divided into a sequence of virtually atomic suboperations, where each
suboperation is constructed so that once it has begun, it is guaranteed to be performed fully, either
by the initiating process or by being helped by another process.

In [Her91] Herlihy presented a universal method for constructing a wait-free algorithm for
any shared data object. However, as for the general methodology for construction of lock-free
algorithms, the universal construction for wait-free algorithms is not practical in all cases and
therefore significant research efforts are being spent on developing efficient wait-free algorithms.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

Installation of NbAda is simple: just extract the distribution archive anywhere you want. To
make it convenient to compile programs which use components from NbAda there is a utility,
nbada config, that outputs suitable command-line options for use with gnatmake.

The utility nbada config, located in src/util, is written in Ada, so it needs to be compiled
and the binary installed somewhere convenient (e.g. /usr/local/bin). Before compiling the path to
the directory where the NbAda source code is install needs to be entered into nbada config.adb
by modifying the following line in nbada config.adb:

−− NBAda source code base d i r e c t o r y .
I n s t a l l B a s e : constant St r ing :=

”/ usr / l o c a l / share /NBAda/ s r c ” ; −− Change t h i s l i n e .
−− Defau l t a r c h i t e c t u r e .
De fau l t Ar ch i t e c tu r e : constant Arch i t e c tu r e := IA32 ;

For convenience the default architecture can also be changed there, the full list of supported
architectures is shown in Table 2.1. The nbada config.adb can be compiled, e.g. with the
command ‘gnatmake nbada config.adb’.

2.1 Using nbada config

As mentioned above, nbada config outputs command line options for use with gnatmake. A
typical usage pattern would be:

% gnatmake myprogram.adb ‘nbada_config LF_SETS‘

where the shell replaces ‘nbada config LF SETS‘ with the output of nbada config LF SETS.
The full set of options recognized by nbada config is outlined below and explained in Table 2.1

and Table 2.2.

Usage: nbada_config [OPTIONS] [LIBRARIES]

Options:

[--isa=<IA32|SPARCV8PLUS|SPARCV9|MIPSN32>]

[--help]

Libraries:

PRIMITIVES (default)

LF_POOLS

EBMR

HPMR

PTB

LFRC

LFMR

SW_LL_SC

LF_STACKS_EBMR

7

8 CHAPTER 2. INSTALLATION

Architecture Description

IA32 32-bit Intel x86 Architecture (Intel Pentium and above).
SPARCV8PLUS 32-bit mode on SPARC v9 compatible processor.
SPARCV9 64-bit mode on SPARC v9 compatible processor.
MIPSN32 32-bit mode on 64-bit MIPS processor (e.g. R-10000)

Table 2.1: Supported instruction set architectures.

Option Description Chapter

PRIMITIVES Hardware atomic primitives. 4.3
LF POOLS Lock-free storage pools. 4.2
EBMR Epoch-based memory reclamation [Fra04]. 4.1
HPMR Hazard pointers memory reclamation [Mic04a, Mic02b]. 4.1
PTB Pass the buck memory reclamation [HLM02, HLMM05]. 4.1
LFRC Lock-free reference counting memory reclamation [HLMM05]. 4.1
LFMR Lock-free reference counting memory reclamation [GPST05, GPST08]. 4.1
SW LL SC Lock-free load-linked/store-conditional primitive [Mic04b]. 3.1.3
LF STACKS EBMR Lock-free dynamic stack [IBM83, Mic04a]. 3.2.1
LF STACKS HPMR Lock-free dynamic stack [IBM83, Mic04a]. 3.2.1
LF QUEUES BOUNDED Lock-free bounded queue [TZ01b]. 3.2.2
LF QUEUES EBMR Lock-free dynamic queue [MS96]. 3.2.2
LF QUEUES HPMR Lock-free dynamic queue [MS96]. 3.2.2
LF QUEUES LFRC Lock-free dynamic queue [HSS07]. 3.2.2
LF QUEUES LFMR Lock-free dynamic queue [HSS07]. 3.2.2
LF DEQUES LFRC Lock-free dynamic deque (a.k.a double ended queue) [ST04]. 3.2.3
LF DEQUES LFMR Lock-free dynamic deque (a.k.a double ended queue) [ST04]. 3.2.3
LF PRIORITY QUEUES EBMR Lock-free dynamic priority queue. 3.2.4
LF PRIORITY QUEUES HPMR Lock-free dynamic priority queue. 3.2.4
LF SETS EBMR Lock-free dynamic set [Mic02a]. 3.2.5
LF SETS HPMR Lock-free dynamic set [Mic02a]. 3.2.5
LF DICTIONARIES EBMR Lock-free dynamic dictionary [Mic02a]. 3.2.5
LF DICTIONARIES HPMR Lock-free dynamic dictionary [Mic02a]. 3.2.5

Table 2.2: Include library options for nbada config.

LF_STACKS_HPMR

LF_QUEUES_BOUNDED

LF_QUEUES_EBMR

LF_QUEUES_HPMR

LF_QUEUES_LFMR

LF_QUEUES_LFRC

LF_DEQUES_LFMR

LF_DEQUES_LFRC

LF_PRIORITY_QUEUES_EBMR

LF_PRIORITY_QUEUES_HPMR

LF_SETS_EBMR

LF_SETS_HPMR

LF_DICTIONARIES_EBMR

LF_DICTIONARIES_HPMR

Examples

To compile the NbAda queue test micro-benchmark (src/benchmarks/Queues) using a lock-
free queue algorithm with epoch-based memory reclamation the following command line could be
used:

% gnatmake queue_test -ILock-Free_Queue ‘nbada_config LF_QUEUES_EBMR‘

2.1. USING NBADA CONFIG 9

The argument -ILock-Free Queue is used to select which queue implementation the bench-
mark will use as it can be compiled with several different ones. Here is the command line to
build with the same lock-free queue algorithm but with the hazard pointers memory reclamation
scheme:

% gnatmake queue_test -ILock-Free_Queue ‘nbada_config LF_QUEUES_HPMR‘

This command line builds the queue test benchmark with a bounded lock-free queue algo-
rithm:

% gnatmake queue_test -ILock-Free_Bounded_Queue ‘nbada_config LF_QUEUES_BOUNDED LF_POOLS‘

10 CHAPTER 2. INSTALLATION

Chapter 3

Data structures

3.1 Atomic Objects

3.1.1 Large Register

An atomic register is a multi-word object that can be read and written with non-blocking atomic
operations.

The package NBAda.Atomic Single Writer Registers

NbAda provides two implementations of linearizable single writer multiple reader multi-word
registers:

• Peterson’s register algorithm [Pet83]; and

• the ReaderField algorithm by Larsson et al. [LGH+04].

The atomic register implementations in NbAda have the same public package specification, so
an application can be compiled against any of them without source code changes.

generic

2 type Element Type i s private ;
package NBAda. Atomic S ing l e Wr i t e r Reg i s t e r s i s

4

type Atomic 1 M Register (No Of Readers : Po s i t i v e) i s limited private ;
6

type Reader Id i s private ;
8

procedure Write (Reg i s t e r : in out Atomic 1 M Register ;
10 Value : in Element Type) ;

procedure Read (Reg i s t e r : in out Atomic 1 M Register ;
12 Reader : in Reader Id ;

Value : out Element Type) ;
14

function Reg i s te r Reader (Reg i s t e r : in Atomic 1 M Register)
16 return Reader Id ;

procedure Dereg i s t e r Reader (Reg i s t e r : in out Atomic 1 M Register ;
18 Reader : in Reader Id) ;

20 Maximum Number Of Readers Exceeded : exception ;

22 private

24 . . . −− Implementation d e t a i l s .

26 end NBAda. Atomic S ing l e Wr i t e r Reg i s t e r s ;

11

12 CHAPTER 3. DATA STRUCTURES

Application constraints:

• Concurrent calls to Write on the same atomic register are forbidden.

• Concurrent calls to Read on the same atomic register with the same Reader Id argument are
forbidden.

• Reader Id values should not be passed between tasks.

• Register Reader/Deregister Reader should be used as seldom as possible.

3.1.2 Linearizable Snapshots

A snapshot is a composite data structure consisting of a number of fields. Each field can be written
separately and the entire state of the composite can be read atomically.

The package NBAda.Atomic Multiwriter Snapshots

The NbAda package NBAda.Atomic Multiwriter Snapshots implements the multiple writer per
component multiple scanner lock-free linearizable snapshot algorithm by Jayanti [Jay05].

generic

2 Max Number Of Components : Natural ;
−− Maximum number o f components in the snapshot .

4 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

package NBAda. Atomic Mult iwr i ter Snapshots i s

8

type Snapshot (<>) i s private ;
10

function Scan return Snapshot ;
12

Maximum Number Of Components Exceeded : exception ;
14

generic

16 −− Use pragma Atomic and pragma Vo l a t i l e f o r Element .
−− Element ’ Ob j e c t S i z e MUST be System . Word Size .

18 type Element i s private ;
package Element Components i s

20

type Element Component i s private ;
22

function Create (Defau l t Value : in Element) return Element Component ;
24

procedure Write (To : in Element Component ;
26 Value : in Element) ;

28 function Read (Component : in Element Component ;
From : in Snapshot) return Element ;

30

private

32

. . . −− Implementation d e t a i l s .
34

end Element Components ;
36

private

38

. . . −− Implementation d e t a i l s .
40

end NBAda. Atomic Mult iwr i ter Snapshots ;

3.1. ATOMIC OBJECTS 13

Application constraints:

• Any task that calls an operation in NBAda.Atomic Multiwriter Snapshots must have registered
an identity by calling the operation Register of the appropriate instance of NBAda.Process Identification.

• All types used for components must have an Object Size equal to System.Word Size.

3.1.3 Software Load-Linked/Store-Conditional for multi-word Objects

The package NBAda.Large Primitives

The package NBAda.Large Primitives implements the lock-free load-linked store-conditional algo-
rithm by Michael [Mic04b].

The algorithm relies on lock-free memory reclamation and the implementation uses the NBAda.Hazard Pointers

memory reclamation algorithm. The include flag for nbada config is SW LL SC.

generic

2 Max Number Of Links : Natural ;
−− Maximum number o f s imul taneous LL/SC per thread .

4 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

package NBAda. Large Pr im i t i v e s i s

8

package MR i s < Implementation de f ined >

10

generic

12 type Element i s private ;
package Load Linked Store Cond i t iona l i s

14

type Shared Element i s limited private ;
16

function Load Linked (Target : in Shared Element) return Element ;
18 function Load Linked (Target : access Shared Element) return Element ;

20 function Sto r e Cond i t i ona l (Target : in Shared Element ;
Value : in Element) return Boolean ;

22 function Sto r e Cond i t i ona l (Target : access Shared Element ;
Value : in Element) return Boolean ;

24

procedure Sto r e Cond i t i ona l (Target : in out Shared Element ;
26 Value : in Element) ;

procedure Sto r e Cond i t i ona l (Target : access Shared Element ;
28 Value : in Element) ;

30

function Ver i fy L ink (Target : in Shared Element) return Boolean ;
32 function Ver i fy L ink (Target : access Shared Element) return Boolean ;

34

procedure I n i t i a l i z e (Target : in out Shared Element ;
36 Value : in Element) ;

procedure I n i t i a l i z e (Target : access Shared Element ;
38 Value : in Element) ;

−− Note : I n i t i a l i z e i s only sa f e to use when there are no
40 −− concurrent updates .

42 private

44 . . . −− Implementation s p e c i f i c

46 end Load Linked Store Cond i t iona l ;

48 procedure P r i n t S t a t i s t i c s ;

50 end NBAda. Large Pr im i t i v e s ;

14 CHAPTER 3. DATA STRUCTURES

Application constraints:

• All objects of type Shared Element must be initialized with the operation Initialize before use.

• Any task that calls an operation in NBAda.Large Primitives must have registered an identity
by calling the operation Register of the appropriate instance of NBAda.Process Identification.

3.2 Containers

NbAda includes a number of lock-free concurrent container data structures.

3.2.1 Stacks

The package NBAda.Lock Free Stacks

The package NBAda.Lock Free Stacks implements a lock-free unbounded stack data structure us-
ing an old well-known algorithm [IBM83, Mic04a]. It can use either the NBAda.Hazard Pointers

(LF STACKS HPMR) or NBAda.Epoch Based Memory Reclamation (LF STACKS EBMR) memory recla-
mation algorithms.

generic

2 type Element Type i s private ;

4 with package Proc e s s Id s i s

new NBAda. P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

package NBAda. Lock Free Stack i s

8

type Stack Type i s limited private ;
10

Stack Empty : exception ;
12

procedure Push (On : in out Stack Type ;
14 Element : in Element Type) ;

procedure Pop (From : in out Stack Type ;
16 Element : out Element Type) ;

function Pop (From : access Stack Type)
18 return Element Type ;

20 function Top (From : access Stack Type)
return Element Type ;

22

private

24

. . . −− Implementation s p e c i f i c
26

end NBAda. Lock Free Stack ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Stack must have registered an identity
by calling the operation Register of the appropriate instance of NBAda.Process Identification.

3.2.2 Queues

The package NBAda.Lock Free Bounded Queues

NbAda contains a lock-free bounded size queue data structure based on the algorithm by Tsigas
and Zhang [TZ01b].

The include flag for nbada config is LF QUEUES BOUNDED.

3.2. CONTAINERS 15

generic

2 type Element Type i s private ;
−− The Element Type must be atomic and Element Type ’ Ob j e c t S i z e must be

4 −− equa l to System . Word Size .
Nul l 0 : Element Type ;

6 Nul l 1 : Element Type ;
−− NOTE: These two va lue s MUST be d i f f e r e n t and MUST NOT appear as

8 −− data va lue s in the queue .
package NBAda. Lock Free Bounded Queues i s

10

type Queue Size i s mod 2∗∗32 ;
12

type Lock Free Queue (Max Size : Queue Size) i s limited private ;
14

procedure Enqueue (Queue : in out Lock Free Queue ;
16 Element : in Element Type) ;

18 procedure Dequeue (Queue : in out Lock Free Queue ;
Element : out Element Type) ;

20

function Dequeue (Queue : access Lock Free Queue) return Element Type ;
22

function Is Empty (Queue : access Lock Free Queue) return Boolean ;
24

procedure Make Empty (Queue : in out Lock Free Queue) ;
26 −− NOTE: Make Empty SHOULD NOT be used when concurrent access i s p o s s i b l e .

28 Queue Full : exception ;
Queue Empty : exception ;

30

private

32

. . . −− Implementation s p e c i f i c
34

end NBAda. Lock Free Bounded Queues ;

Application constraints:

• The type Element Type must be atomic.

• Element Type’Object Size must be equal to System.Word Size.

• The values passed as the two generic formal parameters Null 0 and Null 1 MUST be different
and MUST NOT appear as data values in the queue.

• The operation Make Empty SHOULD NOT be used when concurrent access to the queue
object is possible.

The package NBAda.Lock Free Queues

NbAda contains two lock-free implementations of dynamic queues, one based on the algorithm
by Michael [MS96] and one on the algorithm by Hoffman et al. [HSS07].

The include flag for nbada config is for Michael’s queue algorithm LF QUEUES HPMR or LF QUEUES EBMR

and for Hoffman et al.’s queue algorithm LF QUEUES LFMR or LF QUEUES LFRC.

generic

2 type Element Type i s private ;

4 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

package NBAda. Lock Free Queues i s

8

type Queue Type i s limited private ;

16 CHAPTER 3. DATA STRUCTURES

10

Queue Empty : exception ;
12

procedure I n i t (Queue : in out Queue Type) ;
14 function Dequeue (From : access Queue Type) return Element Type ;

procedure Enqueue (On : in out Queue Type ;
16 Element : in Element Type) ;

18 private

20 . . . −− Implementation s p e c i f i c

22 end NBAda. Lock Free Queues ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Queues must have registered an identity
by calling the operation Register of the appropriate instance of NBAda.Process Identification.

• The operation Init SHOULD NOT be used when concurrent access to the queue object is
possible.

3.2.3 Deques

The package NBAda.Lock Free Deques

The package NBAda.Lock Free Deques implements a lock-free unbounded double ended queue data
structure based on the algorithm by Sundell and Tsigas [ST04].

The include flag for nbada config is LF DEQUES LFMR or LF DEQUES LFRC.

generic

2 type Element Type i s private ;

4 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

package NBAda. Lock Free Deques i s

8

type Deque Type i s limited private ;
10

Deque Empty : exception ;
12

procedure I n i t (Deque : in out Deque Type) ;
14

function Pop Right (Deque : access Deque Type) return Element Type ;
16 procedure Push Right (Deque : in out Deque Type ;

Element : in Element Type) ;
18

function Pop Left (Deque : access Deque Type) return Element Type ;
20 procedure Push Left (Deque : in out Deque Type ;

Element : in Element Type) ;
22

private

24

. . . −− Implementation s p e c i f i c
26

end NBAda. Lock Free Deques ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Deques must have registered an identity
by calling the operation Register of the appropriate instance of NBAda.Process Identification.

3.2. CONTAINERS 17

• The operation Init SHOULD NOT be used when concurrent access to the queue object is
possible.

3.2.4 Priority Queues

The package NBAda.Lock Free Priority Queues

NbAda contains a lock-free dynamic priority queue data structure based on my (unpublished)
modification of Michael’s list-based lock-free set algorithm [Mic02a].

The include flag for nbada config is LF PRIORITY QUEUES EBMR or LF PRIORITY QUEUES HPMR.

generic

2

type Element Type i s private ;
4

with function ”<” (Left , Right : Element Type) return Boolean i s <>;
6 −− Note : Element Type must be t o t a l l y ordered .

8 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
10 −− Process i d e n t i f i c a t i o n .

12 package NBAda. Lock Free Pr io r i ty Queues i s

14 type Prior ity Queue Type i s limited private ;

16 Queue Empty : exception ;
A l ready Present : exception ;

18

procedure I n i t i a l i z e (Queue : in out Prior ity Queue Type) ;
20

procedure I n s e r t (Into : in out Prior ity Queue Type ;
22 Element : in Element Type) ;

24 procedure Delete Min (From : in out Prior ity Queue Type ;
Element : out Element Type) ;

26 function Delete Min (From : in Prior ity Queue Type)
return Element Type ;

28 function Delete Min (From : access Prior ity Queue Type)
return Element Type ;

30

private

32

. . . −− Implementation s p e c i f i c
34

end NBAda. Lock Free Pr io r i ty Queues ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Priority Queues must have registered an
identity by calling the operation Register of the appropriate instance of NBAda.Process Identification.

• The function ”<” on Element Type MUST define a total order.

• The operation Initialize SHOULD NOT be used when concurrent access to the priority queue
object is possible.

3.2.5 Dictionaries and Sets

The package NBAda.Lock Free Sets

NbAda contains a lock-free dynamic set data structure based on the list-based lock-free set algo-
rithm by Michael [Mic02a].

The include flag for nbada config is LF SETS EBMR or LF SETS HPMR.

18 CHAPTER 3. DATA STRUCTURES

generic

2

type Value Type i s private ;
4 type Key Type i s private ;

6 with function ”<” (Left , Right : Key Type) return Boolean i s <>;
−− Note : Key Type must be t o t a l l y ordered .

8

with package Proc e s s Id s i s

10 new P r o c e s s I d e n t i f i c a t i o n (<>);
−− Process i d e n t i f i c a t i o n .

12

package NBAda. Lock Free Set s i s

14 type Set Type i s limited private ;

16 Not Found : exception ;
A l ready Present : exception ;

18

procedure I n i t (Set : in out Set Type) ;
20

procedure I n s e r t (Into : in out Set Type ;
22 Key : in Key Type ;

Value : in Value Type) ;
24

procedure Delete (From : in out Set Type ;
26 Key : in Key Type) ;

28 function Find (In Se t : in Set Type ;
Key : in Key Type) return Value Type ;

30

private

32

. . . −− Implementation s p e c i f i c
34

end NBAda. Lock Free Set s ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Sets must have registered an identity
by calling the operation Register of the appropriate instance of NBAda.Process Identification.

• The function ”<” on Element Type MUST define a total order.

• The operation Init SHOULD NOT be used when concurrent access to the set object is
possible.

The package NBAda.Lock Free Dictionaries

NbAda contains a lock-free dynamic dictionary data structure based on the lock-free hash table
and set algorithms by Michael [Mic02a].

The include flag for nbada config is LF DICTIONARIES EBMR or LF DICTIONARIES HPMR.

generic

2

type Value Type i s private ;
4 type Key Type i s private ;

6 with function Hash (Key : Key Type ;
Tab l e S i ze : Po s i t i v e) return Natural ;

8

with function ”<” (Left , Right : Key Type) return Boolean i s <>;
10 −− Note : Key Type must be t o t a l l y ordered .

12 with package Proc e s s Id s i s

new NBAda. P r o c e s s I d e n t i f i c a t i o n (<>);

3.2. CONTAINERS 19

14 −− Process i d e n t i f i c a t i o n .

16 package NBAda. Lock Fr e e D i c t i ona r i e s i s

18 type Dict ionary Type (No Buckets : Natural) i s limited private ;

20 Not Found : exception ;
A l ready Present : exception ;

22

procedure I n i t (Dic t ionary : in out Dict ionary Type) ;
24

procedure I n s e r t (Into : in out Dict ionary Type ;
26 Key : in Key Type ;

Value : in Value Type) ;
28

procedure Delete (From : in out Dict ionary Type ;
30 Key : in Key Type) ;

32 function Lookup (From : in Dict ionary Type ;
Key : in Key Type)

34 return Value Type ;

36 private

38 . . . −− Implementation s p e c i f i c

40 end NBAda. Lock Fr e e D i c t i ona r i e s ;

Application constraints:

• Any task that calls an operation in NBAda.Lock Free Dictionaries must have registered an
identity by calling the operation Register of the appropriate instance of NBAda.Process Identification.

• The function ”<” on Element Type MUST define a total order.

• The function Hash MUST return a value in the range 0 .. Table Size for every value of
Key Type.

• The operation Init SHOULD NOT be used when concurrent access to the set object is
possible.

20 CHAPTER 3. DATA STRUCTURES

Chapter 4

Support Packages

4.1 Memory Reclamation Algorithms

In a concurrent program it is often not obvious when it is safe to free a dynamically allocated block
of memory (consider e.g. the case when another thread holds a local pointer to the object). In the
absence of a concurrency safe (and lock-free) general garbage collector there are efficient lock-free
memory reclamation algorithms that can solve this problem, provided that the application or data
structure use them to manage dynamically allocated nodes and the references to them.

The memory reclamation algorithms distinguish the managed nodes into live nodes that are
part of the logical state of the user data structure and logically deleted nodes that are not part of
the logical state of the user data structure. In some memory reclamation algorithms the user data
structure is expected to notify the memory reclamation algorithm when a node changes state to
logically deleted, in others in can be deduced from reachability. The memory reclamation algorithm
will delay the actual reclamation of a logically deleted until there cannot be any potentially accesses
to the node form any thread (using the memory reclamation API).

There are two different levels of service or“protection” offered by memory reclamation algo-
rithms, I define them as follows:

• Reclamation safe private references. The memory reclamation algorithm only safe-
guards nodes referenced by private (task local) references, i.e. does not safeguard shared
references. The application needs to take care that the shared references it uses cannot
reference logically deleted nodes. E.g. applications can usually only follow (dereference)
references in nodes it knows are alive.

• Reclamation safe private and shared references. The memory reclamation algorithm
safeguards all private and shared references. The application can safely dereference any
shared reference.

See [GPST08] for a more thorough treatment of lock-free memory reclamation algorithms and
their properties.

NbAda includes implementations of several memory reclamation algorithms of both service
levels.

4.1.1 Reclamation safe private references

NbAda includes implementations of the Hazard Pointers lock-free memory reclamation algorithm
by Michael [Mic02b, Mic04a] (NBAda.Hazard Pointers) and the epoch based concurrent memory
reclamation algorithm described in [Fra04, Har05] (NBAda.Epoch Based Memory Reclamation).

The intention is that the two packages should be API compatible.

21

22 CHAPTER 4. SUPPORT PACKAGES

The package NBAda.Hazard Pointers and

the package NBAda.Epoch Based Memory Reclamation

Application constraints:

• Any task that calls an memory reclamation operation must have registered an identity by
calling the operation Register of the appropriate instance of NBAda.Process Identification.

generic

2 Max Number Of Dereferences : Natural ;
−− Maximum number o f s imu l taneous l y dere ferenced l i n k s per thread .

4 with package Proc e s s Id s i s

new P r o c e s s I d e n t i f i c a t i o n (<>);
6 −− Process i d e n t i f i c a t i o n .

8 In t eg r i t y Check ing : Boolean := Fal se ;
−− Enable s t rong i n t e g r i t y check ing .

10 Verbose Debug : Boolean := Fal se ;
−− Enable verbose debug output .

12 package NBAda. Hazard Pointers i s

14 type Managed Node Base i s abstract tagged limited private ;
−− I nh e r i t from t h i s base type to crea t e your own managed types .

16

procedure Free (Object : access Managed Node Base) i s abstract ;
18

generic

20 type Managed Node i s new Managed Node Base with private ;
package Operat ions i s

22

type Shared Reference i s limited private ;
24 −− Note : A l l shared v a r i a b l e s o f type Shared Reference MUST be

−− dec la red atomic by ’ pragma Atomic (Variable Name) ; ’ .
26

type Node Access i s access a l l Managed Node ;
28 −− Note : There SHOULD NOT be any shared v a r i a b l e s o f type

−− Node Access .
30

function Dere f e r ence (Shared : access Shared Reference)
32 return Node Access ;

−− Note :
34

procedure Release (Local : in Node Access) ;
36 −− Note : Each dere ferenced shared po in t e r MUST be r e l e a s ed

−− e v en t ua l l y .
38

procedure Delete (Local : in Node Access) ;
40 −− Note : De le te may only be c a l l e d when the c a l l e r can

−− guarantee t ha t there are NO and WILL NOT BE any more shared
42 −− r e f e r ence s to the node . The memory management scheme makes

−− sure the node i s not f r e ed u n t i l a l l l o c a l r e f e r ence s have
44 −− been r e l e a s ed .

46 function Boolean Compare And Swap (Shared : access Shared Reference ;
Old Value : in Node Access ;

48 New Value : in Node Access)
return Boolean ;

50

procedure Value Compare And Swap (Shared : access Shared Reference ;
52 Old Value : in Node Access ;

New Value : in out Node Access) ;
54

procedure Void Compare And Swap (Shared : access Shared Reference ;
56 Old Value : in Node Access ;

New Value : in Node Access) ;
58

4.1. MEMORY RECLAMATION ALGORITHMS 23

60 procedure I n i t i a l i z e (Shared : access Shared Reference ;
New Value : in Node Access) ;

62 −− Note : I n i t i a l i z e i s only sa f e to use when there are no
−− concurrent updates .

64

private

66

type Shared Reference i s new Node Access ;
68 −− Note : A l l shared v a r i a b l e s o f type Shared Reference MUST be

−− dec la red atomic by ’ pragma Atomic (Variable Name) ; ’ .
70

end Operat ions ;
72

74 type Shared Reference Base i s limited private ;
−− For type separa t ion between shared r e f e r ence s to d i f f e r e n t

76 −− managed types de r i v e your own shared re f e r ence types from
−− Shared Reference Base and i n s t a n t i a t e the memory management

78 −− opera t ion package below fo r each o f them .

80 generic

82 type Managed Node i s

new Managed Node Base with private ;
84

type Shared Reference i s new Shared Reference Base ;
86 −− Al l shared v a r i a b l e s o f type Shared Reference MUST be dec la red

−− atomic by ’ pragma Atomic (Variable Name) ; ’ .
88

package Refe rence Operat ions i s

90

type Node Access i s access a l l Managed Node ;
92 −− Note : There SHOULD NOT be any shared v a r i a b l e s o f type

−− Node Access .
94

type Pr iva t e Re f e r ence i s private ;
96 −− Note : There SHOULD NOT be any shared v a r i a b l e s o f type

−− Priva te Re ference .
98 Nul l Re f e r ence : constant Pr iva t e Re f e r ence ;

−− Note : A marked nu l l r e f e r ence i s not equa l to Nul l Re ference .
100

function Dere f e r ence (Link : access Shared Reference)
102 return Pr iva t e Re f e r ence ;

104 procedure Release (Node : in Pr iva t e Re f e r ence) ;

106 function ”+” (Node : in Pr iva t e Re f e r ence)
return Node Access ;

108 function Deref (Node : in Pr iva t e Re f e r ence)
return Node Access ;

110

function Boolean Compare And Swap (Link : access Shared Reference ;
112 Old Value : in Pr iva t e Re f e r ence ;

New Value : in Pr iva t e Re f e r ence)
114 return Boolean ;

116 procedure Void Compare And Swap (Link : access Shared Reference ;
Old Value : in Pr iva t e Re f e r ence ;

118 New Value : in Pr iva t e Re f e r ence) ;

120 procedure Delete (Node : in Pr iva t e Re f e r ence) ;

122 procedure Store (Link : access Shared Reference ;
Node : in Pr iva t e Re f e r ence) ;

124 −− Note : Store i s only sa f e to use when there cannot be any
−− concurrent updates to Link .

126

24 CHAPTER 4. SUPPORT PACKAGES

generic

128 type User Node Access i s access Managed Node ;
−− Se l e c t an appropr ia te (p r e f e r a b l y non−b l o c k i n g) s to rage

130 −− poo l by the ” fo r User Node Access ’ Storage Poo l use . . . ”
−− cons t ruc t .

132 −− Note : The nodes a l l o c a t e d in t h i s way must have an
−− implementation o f Free t ha t use the same s torage poo l .

134 function Create return Pr iva t e Re f e r ence ;
−− Creates a new User Node and re turns a sa f e r e f e r ence to i t .

136

procedure Mark (Node : in out Pr iva t e Re f e r ence) ;
138 function Mark (Node : in Pr iva t e Re f e r ence)

return Pr iva t e Re f e r ence ;
140 procedure Unmark (Node : in out Pr iva t e Re f e r ence) ;

function Unmark (Node : in Pr iva t e Re f e r ence)
142 return Pr iva t e Re f e r ence ;

function Is Marked (Node : in Pr iva t e Re f e r ence)
144 return Boolean ;

146 function Is Marked (Node : in Shared Reference)
return Boolean ;

148

function ”=” (Link : in Shared Reference ;
150 Ref : in Pr iva t e Re f e r ence) return Boolean ;

function ”=” (Ref : in Pr iva t e Re f e r ence ;
152 Link : in Shared Reference) return Boolean ;

154 private

156 . . . −− Implementation d e t a i l s .

158 end Refe rence Operat ions ;

160 procedure P r i n t S t a t i s t i c s ;

162 private

164 . . . −− Implementation d e t a i l s .

166 end NBAda. Hazard Pointers ;

4.1.2 Reclamation safe private and shared references

NbAda contains implementations of two memory reclamation algorithms that safeguards all pri-
vate and shared references. The two algorithms are the lock-free reference counting algorithm SL-
FRC by Herlihy et al. [HLM02, HLMM02, HLMM05] (NBAda.Lock Free Reference Counting) and
the lock-free reclamation algorithm Beware & Cleanup by Gidenstam et al. [GPST05] (NBAda.Lock Free Memory Reclamation).

The package NBAda.Lock Free Reference Counting and

the package NBAda.Lock Free Memory Reclamation

Application constraints:

• Any task that calls an memory reclamation operation must have registered an identity by
calling the operation Register of the appropriate instance of NBAda.Process Identification.

generic

2

Max Number Of Dereferences : Natural ;
4 −− Maximum number o f s imu l taneous l y dere ferenced l i n k s per thread .

6 Max Number Of Links Per Node : Natural ;
−− Maximum number o f l i n k s in a shared node .

8

4.1. MEMORY RECLAMATION ALGORITHMS 25

with package Proc e s s Id s i s

10 new NBAda. P r o c e s s I d e n t i f i c a t i o n (<>);
−− Process i d e n t i f i c a t i o n .

12

Max De l e t e L i s t S i z e : Natural :=
14 Proc e s s Id s . Max Number Of Processes ∗∗ 2 ∗

(Max Number Of Dereferences + Max Number Of Links Per Node +
16 Max Number Of Links Per Node + 1) ;

18 Clean Up Threshold : Natural := Max De l e t e L i s t S i z e ;
−− The t h r e s ho l d on the d e l e t e l i s t s i z e f o r Clean Up to be done .

20

Scan Threshold : Natural := Clean Up Threshold ;
22 −− The t h r e s ho l d on the d e l e t e l i s t s i z e f o r Scan to be done .

24 C o l l e c t S t a t i s t i c s : Boolean := True ;
−− Enable some s t a t i c s ga the r ing .

26

package NBAda. Lock Free Memory Reclamation i s

28

type Managed Node Base i s abstract tagged limited private ;
30 −− I nh e r i t from t h i s base type to crea t e your own managed types .

32 procedure Dispose (Node : access Managed Node Base ;
Concurrent : in Boolean) i s abstract ;

34 −− Dispose shou ld s e t a l l shared r e f e r ence s i n s i d e the node to nu l l .

36 procedure Clean Up (Node : access Managed Node Base) i s abstract ;
−− Clean Up shou ld make sure t ha t none o f the shared r e f e r ence s

38 −− i n s i d e the node po in t s to a node tha t was d e l e t e d at the po in t
−− in time when Clean Up was c a l l e d .

40

function I s De l e t ed (Node : access Managed Node Base)
42 return Boolean ;

−− Returns t rue i f De le te (see below) has been c a l l e d on the node .
44

procedure Free (Object : access Managed Node Base) i s abstract ;
46 −− Note : Due to some p e c u l i a r i t i e s o f the Ada s torage poo l

−− management managed nodes need to have a d i s pa t ch ing p r im i t i v e
48 −− opera t ion tha t c a l l s the ins tance o f Unchecked Deal locat ion

−− appropr ia t e f o r the s p e c i f i c node type at hand . Without
50 −− t h i s the wrong ins tance o f Unchecked Deal locat ion might ge t

−− c a l l e d − o f t en with d i s a s t r ou s consequences as i t t r i e s re turn
52 −− the memory to the wrong s to rage poo l .

54 type Shared Reference Base i s limited private ;
−− For type separa t ion between shared r e f e r ence s to d i f f e r e n t

56 −− managed types de r i v e your own shared re f e r ence types from
−− Shared Reference Base and i n s t a n t i a t e the memory management

58 −− opera t ion package below fo r each o f them .

60 type Shared Refe rence Base Acces s i s access a l l Shared Reference Base ;
type Refe r ence Se t i s array (In t eg e r range <>) of

62 Shared Refe rence Base Acces s ;
−− These two types are de f ined fo r c ompa t i b i l i t y with the

64 −− Lock Free Reference Counting package .

66 generic

68 type Managed Node i s

new Managed Node Base with private ;
70

type Shared Reference i s new Shared Reference Base ;
72 −− Al l shared v a r i a b l e s o f type Shared Reference MUST be dec la red

−− atomic by ’ pragma Atomic (Variable Name) ; ’ .
74

package Operat ions i s

26 CHAPTER 4. SUPPORT PACKAGES

76

type Node Access i s access a l l Managed Node ;
78 −− Note : There SHOULD NOT be any shared v a r i a b l e s o f type

−− Node Access .
80

type Pr iva t e Re f e r ence i s private ;
82 −− Note : There SHOULD NOT be any shared v a r i a b l e s o f type

−− Priva te Re ference .
84 Nul l Re f e r ence : constant Pr iva t e Re f e r ence ;

function Image (R : Pr iva t e Re f e r ence) return St r ing ;
86

function Dere f e r ence (Link : access Shared Reference)
88 return Pr iva t e Re f e r ence ;

90 procedure Release (Node : in Pr iva t e Re f e r ence) ;

92 function ”+” (Node : in Pr iva t e Re f e r ence)
return Node Access ;

94 function Deref (Node : in Pr iva t e Re f e r ence)
return Node Access ;

96

function Copy (Node : in Pr iva t e Re f e r ence) return Pr iva t e Re f e r ence ;
98 −− Creates a new Priva te Reference to Node . Both w i l l need to be

−− r e l e a s ed .
100

function Compare And Swap (Link : access Shared Reference ;
102 Old Value : in Pr iva t e Re f e r ence ;

New Value : in Pr iva t e Re f e r ence)
104 return Boolean ;

106 procedure Compare And Swap (Link : access Shared Reference ;
Old Value : in Pr iva t e Re f e r ence ;

108 New Value : in Pr iva t e Re f e r ence) ;

110 procedure Delete (Node : in Pr iva t e Re f e r ence) ;

112

procedure Store (Link : access Shared Reference ;
114 Node : in Pr iva t e Re f e r ence) ;

116 generic

type User Node Access i s access Managed Node ;
118 −− Se l e c t an appropr ia te (p r e f e r a b l y non−b l o c k i n g) s to rage

−− poo l by the ” fo r User Node Access ’ Storage Poo l use . . . ”
120 −− cons t ruc t .

−− Note : The nodes a l l o c a t e d in t h i s way must have an
122 −− implementation o f Free t ha t use the same s torage poo l .

function Create return Pr iva t e Re f e r ence ;
124 −− Creates a new User Node and re turns a sa f e r e f e r ence to i t .

126 −− Priva te (and shared) r e f e r ence s can be tagged with a mark .
−− NOTE: A marked Nul l Re ference i s not equa l (=) to an unmarked .

128 procedure Mark (Node : in out Pr iva t e Re f e r ence) ;

130 function Mark (Node : in Pr iva t e Re f e r ence)
return Pr iva t e Re f e r ence ;

132 procedure Unmark (Node : in out Pr iva t e Re f e r ence) ;
function Unmark (Node : in Pr iva t e Re f e r ence)

134 return Pr iva t e Re f e r ence ;
function Is Marked (Node : in Pr iva t e Re f e r ence)

136 return Boolean ;

138 function Is Marked (Node : in Shared Reference)
return Boolean ;

140

function ”=” (Le f t : in Pr iva t e Re f e r ence ;
142 Right : in Pr iva t e Re f e r ence) return Boolean ;

4.1. MEMORY RECLAMATION ALGORITHMS 27

function ”=” (Link : in Shared Reference ;
144 Ref : in Pr iva t e Re f e r ence) return Boolean ;

function ”=” (Ref : in Pr iva t e Re f e r ence ;
146 Link : in Shared Reference) return Boolean ;

−− I t i s p o s s i b l e to compare a re f e r ence to the current va lue o f a l i n k .
148

−−

150 −− Unsafe opera t ions .
−− These SHOULD only be use when the user a lgor i thm guarantees

152 −− the absence o f ABA−problems .
−− In such a l gor i thms the use o f t he se opera t ions in some pa r t i c u l a r

154 −− s i t u a t i o n s cou ld a l l ow some performance improving op t im i za t i ons .
−−

156

type Unsafe Reference Value i s private ;
158 −− Note : An Unsafe Reference Value does not keep a claim to any

−− node and can t h e r e f o r e only be used where ABA sa f e t y i s
160 −− ensured by other means . I t cannot be dere ferenced .

162 function Unsafe Read (Link : access Shared Reference)
return Unsafe Reference Value ;

164

function Compare And Swap (Link : access Shared Reference ;
166 Old Value : in Unsafe Reference Value ;

New Value : in Pr iva t e Re f e r ence)
168 return Boolean ;

function Compare And Swap (Link : access Shared Reference ;
170 Old Value : in Unsafe Reference Value ;

New Value : in Unsafe Reference Value)
172 return Boolean ;

procedure Compare And Swap (Link : access Shared Reference ;
174 Old Value : in Unsafe Reference Value ;

New Value : in Pr iva t e Re f e r ence) ;
176 procedure Compare And Swap (Link : access Shared Reference ;

Old Value : in Unsafe Reference Value ;
178 New Value : in Unsafe Reference Value) ;

180 function Is Marked (Node : in Unsafe Reference Value)
return Boolean ;

182

function Mark (Node : in Unsafe Reference Value)
184 return Unsafe Reference Value ;

186 function ”=” (Val : in Unsafe Reference Value ;
Ref : in Pr iva t e Re f e r ence) return Boolean ;

188 function ”=” (Ref : in Pr iva t e Re f e r ence ;
Val : in Unsafe Reference Value) return Boolean ;

190

function ”=” (Link : in Shared Reference ;
192 Ref : in Unsafe Reference Value) return Boolean ;

function ”=” (Ref : in Unsafe Reference Value ;
194 Link : in Shared Reference) return Boolean ;

196 private

198 . . . −− Implementation d e t a i l s .

200 end Operat ions ;

202 procedure P r i n t S t a t i s t i c s ;

204 private

206 . . . −− Implementation d e t a i l s .

208 end NBAda. Lock Free Memory Reclamation ;

28 CHAPTER 4. SUPPORT PACKAGES

4.2 Memory Allocation Pools

The package NBAda.Lock Free Fixed Size Storage Pools

NbAda contains a generic fixed size lock-free storage pool based on the lock-free free-list algorithm
in [IBM83].

Application constraints:

• A pool instance MUST NOT be used for object that have storage size larger than Block Size.

package NBAda. Lock Free F ixed S i z e S to rage Poo l s i s

2

type Block Count i s range 0 . . 2∗∗16 − 1 ;
4

type Lock Free Storage Poo l
6 (Poo l S i z e : Block Count ;

B lock S i z e : System . Storage Elements . Storage Count) i s

8 new System . Sto rage Poo l s . Root Storage Pool with private ;

10 procedure Al l o ca t e
(Pool : in out Lock Free Storage Poo l ;

12 Storage Address : out System . Address ;
S i z e In Sto rage E l ement s : in System . Storage Elements . Storage Count ;

14 Alignment : in System . Storage Elements . Storage Count) ;

16 procedure Dea l l o ca t e
(Pool : in out Lock Free Storage Poo l ;

18 Storage Address : in System . Address ;
S i z e In Sto rage E l ement s : in System . Storage Elements . Storage Count ;

20 Alignment : in System . Storage Elements . Storage Count) ;

22 function Sto r ag e S i z e (Pool : Lock Free Storage Poo l)
return System . Storage Elements . Storage Count ;

24

function Val idate (Pool : Lock Free Storage Poo l)
26 return Block Count ;

28 function Belongs To (Pool : Lock Free Storage Poo l ;
Storage Address : System . Address)

30 return Boolean ;

32 Storage Exhausted : exception ;
Implementat ion Error : exception ;

34

private

36

. . . −− Implementation d e t a i l s .
38

end NBAda. Lock Free F ixed S i z e S to rage Poo l s ;

The package NBAda.Lock Free Growing Storage Pools

The growing storage pool in NbAda automatically grows in size when the memory demand war-
rants it. It never shirks, however.

Application constraints:

• A pool instance MUST NOT be used for object that have storage size larger than Block Size.

package NBAda. Lock Free Growing Storage Pools i s

2

type Lock Free Storage Poo l

4.3. HARDWARE ABSTRACTION INTERFACE 29

4 (B lock S i z e : System . Storage Elements . Storage Count) i s

new System . Sto rage Poo l s . Root Storage Pool with private ;
6

procedure Al l o ca t e
8 (Pool : in out Lock Free Storage Poo l ;

Storage Address : out System . Address ;
10 S i z e In Sto rage E l ement s : in System . Storage Elements . Storage Count ;

Alignment : in System . Storage Elements . Storage Count) ;
12

procedure Dea l l o ca t e
14 (Pool : in out Lock Free Storage Poo l ;

Storage Address : in System . Address ;
16 S i z e In Sto rage E l ement s : in System . Storage Elements . Storage Count ;

Alignment : in System . Storage Elements . Storage Count) ;
18

function Sto r ag e S i z e (Pool : Lock Free Storage Poo l)
20 return System . Storage Elements . Storage Count ;

22 function Val idate (Pool : Lock Free Storage Poo l)
return Natural ;

24

Storage Exhausted : exception ;
26 Implementat ion Error : exception ;

28 private

30 . . . −− Implementation d e t a i l s .

32 end NBAda. Lock Free Growing Storage Pools ;

4.3 Hardware Abstraction Interface

The package NBAda.Primitives

package NBAda. Pr im i t i v e s i s

2

Not Implemented : exception ;
4

procedure Membar ;
6

type Standard Unsigned i s mod 2∗∗System . Word Size ;
8 pragma Atomic (Standard Unsigned) ;

10 generic

−− Element ’ Ob j e c t S i z e MUST be System . Word Size .
12 type Element i s private ;

function Standard Atomic Read (Target : access Element) return Element ;
14

generic

16 −− Element ’ Ob j e c t S i z e MUST be System . Word Size .
type Element i s private ;

18 procedure Standard Atomic Write (Target : access Element ;
Value : in Element) ;

20

generic

22 −− Element ’ Ob j e c t S i z e MUST be System . Word Size .
type Element i s private ;

24 procedure Standard Compare And Swap (Target : access Element ;
Old Value : in Element ;

26 New Value : in out Element) ;

28 generic

−− Element ’ Ob j e c t S i z e MUST be System . Word Size .
30 type Element i s private ;

function Standard Boolean Compare And Swap (Target : access Element ;

30 CHAPTER 4. SUPPORT PACKAGES

32 Old Value : in Element ;
New Value : in Element)

34 return Boolean ;

36 generic

−− Element ’ Ob j e c t S i z e MUST be System . Word Size .
38 type Element i s private ;

procedure Standard Void Compare And Swap (Target : access Element ;
40 Old Value : in Element ;

New Value : in Element) ;
42

procedure Fetch And Add (Target : access Standard Unsigned ;
44 Increment : in Standard Unsigned) ;

46 function Fetch And Add (Target : access Standard Unsigned ;
Increment : in Standard Unsigned)

48 return Standard Unsigned ;

50

type Unsigned 32 i s mod 2∗∗32 ;
52 pragma Atomic (Unsigned 32) ;

54 generic

−− Element ’ Ob j e c t S i z e MUST be 32.
56 type Element i s private ;

function Atomic Read 32 (Target : access Element) return Element ;
58

generic

60 −− Element ’ Ob j e c t S i z e MUST be 32.
type Element i s private ;

62 procedure Atomic Write 32 (Target : access Element ;
Value : in Element) ;

64

generic

66 −− Element ’ Ob j e c t S i z e MUST be 32.
type Element i s private ;

68 procedure Compare And Swap 32 (Target : access Element ;
Old Value : in Element ;

70 New Value : in out Element) ;

72 generic

−− Element ’ Ob j e c t S i z e MUST be 32.
74 type Element i s private ;

function Boolean Compare And Swap 32 (Target : access Element ;
76 Old Value : in Element ;

New Value : in Element)
78 return Boolean ;

80 generic

−− Element ’ Ob j e c t S i z e MUST be 32.
82 type Element i s private ;

procedure Void Compare And Swap 32 (Target : access Element ;
84 Old Value : in Element ;

New Value : in Element) ;
86

procedure Fetch And Add 32 (Target : access Unsigned 32 ;
88 Increment : in Unsigned 32) ;

90 function Fetch And Add 32 (Target : access Unsigned 32 ;
Increment : in Unsigned 32)

92 return Unsigned 32 ;

94 type Unsigned 64 i s mod 2∗∗64 ;
pragma Atomic (Unsigned 64) ;

96

generic

98 −− Element ’ Ob j e c t S i z e MUST be 64.

4.3. HARDWARE ABSTRACTION INTERFACE 31

type Element i s private ;
100 function Atomic Read 64 (Target : access Element) return Element ;

102 generic

−− Element ’ Ob j e c t S i z e MUST be 64.
104 type Element i s private ;

procedure Atomic Write 64 (Target : access Element ;
106 Value : in Element) ;

108 generic

−− Element ’ Ob j e c t S i z e MUST be 64.
110 type Element i s private ;

procedure Compare And Swap 64 (Target : access Element ;
112 Old Value : in Element ;

New Value : in out Element) ;
114

generic

116 −− Element ’ Ob j e c t S i z e MUST be 64.
type Element i s private ;

118 function Boolean Compare And Swap 64 (Target : access Element ;
Old Value : in Element ;

120 New Value : in Element)
return Boolean ;

122

generic

124 −− Element ’ Ob j e c t S i z e MUST be 64.
type Element i s private ;

126 procedure Void Compare And Swap 64 (Target : access Element ;
Old Value : in Element ;

128 New Value : in Element) ;

130 procedure Fetch And Add 64 (Target : access Unsigned 64 ;
Increment : in Unsigned 64) ;

132

function Fetch And Add 64 (Target : access Unsigned 64 ;
134 Increment : in Unsigned 64)

return Unsigned 64 ;
136

end NBAda. Pr im i t i v e s ;

The package NBAda.Process Identification

generic

2 Max Number Of Processes : Natural ;
package NBAda. P r o c e s s I d e n t i f i c a t i o n i s

4

type Process ID Type i s new Natural range 1 . . Max Number Of Processes ;
6

−− Reg i s t e r a process ID fo r t h i s t a s k .
8 procedure Reg i s t e r ;

10 −− Returns the process ID of the c a l l i n g ta sk .
function Process ID return Process ID Type ;

12

end NBAda. P r o c e s s I d e n t i f i c a t i o n ;

32 CHAPTER 4. SUPPORT PACKAGES

Bibliography

[Bar93] Greg Barnes. A method for implementing lock-free shared data structures. In Pro-
ceedings of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 261–270, June 1993.

[Fra04] Keir A. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, February
2004.

[GC96] Michael Greenwald and David R. Cheriton. The synergy between non-blocking syn-
chronization and operating system structure. In Operating Systems Design and Im-
plementation, pages 123–136, 1996.

[Gid06] Anders Gidenstam. Algorithms for synchronization and consistency in concurrent
system services. PhD thesis, Chalmers University of Technology, 2006.

[GPST05] Anders Gidenstam, Marina Papatriantafilou, Hkan Sundell, and Philippas Tsigas.
Practical and efficient lock-free garbage collection based on reference counting. In
Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms,
and Networks (I-SPAN), pages 202–207. IEEE Computer Society, December 2005.

[GPST08] Anders Gidenstam, Marina Papatriantafilou, H̊akan Sundell, and Philippas Tsigas.
Efficient and reliable lock-free memory reclamation based on reference counting. IEEE
Transactions on Parallel and Distributed Systems, August 2008. Preprint.

[Har05] Thomas E. Hart. Comparative performance of memory reclamation strategies for lock-
free and concurrently-readable data structures. Master’s thesis, University of Toronto,
2005.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transaction on Programming and
Systems, 11(1):124–149, January 1991.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems, 15(5):745–770, Novem-
ber 1993.

[HLM02] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem: A
mechanism for supporting dynamic-sized, lock-free data structure. In Proceedings of
16th International Symposium on Distributed Computing (DISC 2002), volume 2508
of Lecture Notes in Computer Science, pages 339–353. Springer Verlag, October 2002.

[HLMM02] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Dynamic-sized
lock-free data structures. In Proceedings of the 21st annual symposium on Principles
of distributed computing, pages 131–131. ACM Press, 2002.

[HLMM05] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Nonblocking mem-
ory management support for dynamic-sized data structures. ACM Transactions on
Computer Systems, 23(2):146–196, 2005.

33

34 BIBLIOGRAPHY

[HSS07] Moshe Hoffman, Ori Shalev, and Nir Shavit. The baskets queue. In Proceed-
ings of the 11th International Conference On the Principles Of Distributed Systems
(OPODIS’07), volume 4878 of Lecture Notes in Computer Science, pages 401–414.
Springer-Verlag, 2007.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[IBM83] IBM. IBM System/370 Extended Architecture, Principles of Operation, 1983. Publi-
cation No. SA22-7085.

[Jay05] Prasad Jayanti. An optimal multi-writer snapshot algorithm. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing (STOC’05), pages
723–732. ACM Press, 2005.

[LGH+04] Andreas Larsson, Anders Gidenstam, Phuong H Ha, Marina Papatriantafilou, and
Philippas Tsigas. Multi-word atomic read/write registers on multiprocessor systems.
In Proceedings of the 12th Annual European Symposium on Algorithms (ESA’04)
LNCS 3221, pages 736–748. Springer-Verlag, September 2004.

[Mic02a] Maged M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA-02), pages 73–82. ACM Press, August 2002.

[Mic02b] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In Proceedings of the 21st Annual Symposium on Principles
of Distributed Computing, pages 21–30. ACM Press, 2002.

[Mic04a] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15(8), August 2004.

[Mic04b] Maged M. Michael. Practical lock-free and wait-free LL/SC/VL implementations
using 64-bit CAS. In Proceedings of the 18th International Conference on Distributed
Computing (DISC ’04), October 2004.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pages 267–275. ACM Press, 1996.

[Pet83] Gary L. Peterson. Concurrent reading while writing. ACM Transactions on Program-
ming Languages and Systems, 5(1):46–55, January 1983.

[Rin99] Martin C. Rinard. Effective fine-grain synchronization for automatically parallelized
programs using optimistic synchronization primitives. ACM Transactions on Com-
puter Systems, 17(4):337–371, 1999.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

[ST04] H̊akan Sundell and Philippas Tsigas. Lock-free and practical deques using single-word
compare-and-swap. In Proceedings of the 8th International Conference on Principles
of Distributed Systems (OPODIS ’04), volume 3544 of Lecture Notes in Computer
Science. Springer Verlag, December 2004.

[TZ01a] Philippas Tsigas and Yi Zhang. Evaluating the performance of non-blocking syn-
chronisation on shared-memory multiprocessors. In Proc. of the ACM SIGMETRICS
2001/Performance 2001, pages 320–321. ACM press, June 2001.

BIBLIOGRAPHY 35

[TZ01b] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking concurrent
fifo queue for shared memory multiprocessor systems. In Proceedings of the 13th
annual ACM Symposium on Parallel Algorithms and Architectures, pages 134–143.
ACM Press, 2001.

[TZ02] Philippas Tsigas and Yi Zhang. Integrating non-blocking synchronisation in parallel
applications: Performance advantages and methodologies. In Proc. of the 3rd ACM
Workshop on Software and Performance (WOSP’02), pages 55–67. ACM press, July
2002.

36 BIBLIOGRAPHY

Appendix A

GNU General Public Licence

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

37

38 APPENDIX A. GNU GENERAL PUBLIC LICENCE

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

39

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

40 APPENDIX A. GNU GENERAL PUBLIC LICENCE

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

41

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

42 APPENDIX A. GNU GENERAL PUBLIC LICENCE

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

